Operator sine-functions and trigonometric exponential pairs
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 162-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

With the help of operator functional relations $Sh(t+s)+Sh(t-s) = 2[ I+2 Sh^2(\frac t2)] Sh(s), Sh(0)=0,$ we introduce and study strongly continuous sine-function $Sh(t), t\in(-\infty, \infty),$ of linear bounded transformations acting in a complex Banach space $E$, together with the cosine-function $Ch(t)$ given by the equation $Ch(t)=I+2Sh^2(\frac t2)$, where $I$ is the identity operator in $E$. The pair $Ch(t)$, $ Sh(t)$ is the exponential of a trigonometric pair (ETP). For such pairs a generating operator (generator) is determined by the equation $Sh''(0)\varphi = Ch''(0) \varphi = A \varphi$, and a criterion for $A$ to be the generator of the ETP is provided. A relationship of $Sh(t)$ with the uniform well-posedness of the Cauchy problem with the Krein condition for the equation $\frac{d^2 u(t)}{dt^2}=Au(t)$ is described. This problem is uniformly well-posed if and only if $A$ is an exponent generator of the sine-function $Sh(t)$. The concept of bundles of several ETP, which also forms a ETP, is introduced, and a representation for its generator is given. The obtained facts expand significantly the possibilities of operator methods in the study of well-posed initial boundary value problems.
@article{ZNSL_2019_480_a10,
     author = {V. A. Kostin and A. V. Kostin and D. V. Kostin},
     title = {Operator sine-functions and trigonometric exponential pairs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--169},
     year = {2019},
     volume = {480},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a10/}
}
TY  - JOUR
AU  - V. A. Kostin
AU  - A. V. Kostin
AU  - D. V. Kostin
TI  - Operator sine-functions and trigonometric exponential pairs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 162
EP  - 169
VL  - 480
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a10/
LA  - ru
ID  - ZNSL_2019_480_a10
ER  - 
%0 Journal Article
%A V. A. Kostin
%A A. V. Kostin
%A D. V. Kostin
%T Operator sine-functions and trigonometric exponential pairs
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 162-169
%V 480
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a10/
%G ru
%F ZNSL_2019_480_a10
V. A. Kostin; A. V. Kostin; D. V. Kostin. Operator sine-functions and trigonometric exponential pairs. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 162-169. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a10/

[1] V. V. Vasilev, S. I. Piskarev, S. G. Krein, “Polugruppy operatorov, kosinus operator-funktsii i lineinye differentsialnye uravneniya”, Itogi nauki i tekhniki. Seriya Matematicheskii analiz, VINITI, 1990, 87–202 | MR

[2] Dzh. Goldstein, Polugruppy lineinykh operatorov i ikh prilozheniya, Vysscha shkola, Kiev, 1989 | MR

[3] V. A. Kostin, “Abstraktnye silno-nepreryvnye pary trigonometricheskikh grupp preobrazovanii”, Differentsialnye uravneniya, 7:8 (1984), 1419–1425

[4] V. A. Kostin, “Ob analiticheskikh polugruppakh i silno nepreryvnykh kosinus-funktsiyakh”, DAN SSSR, 307:4 (1989), 796–799

[5] A. V. Kostin, “Eksponentsialnye kosinus operator-funktsii i ikh svyazki”, Materialy VZMSh S. G. Kreina (Voronezh, 2018), 254–255

[6] V. A. Kostin, “K reshenii odnoi problemy, svyazannoi s abstraktnoi kosinus-funktsiei”, DAN, 336:5 (1994), 584–586 | Zbl

[7] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[8] S. G. Krein, M. I. Khazan, “Differentsialnye uravneniya v banakhovom prostranstve”, Itogi nauki i tekhniki. Mat. analiz, 21, 1983, 130–264

[9] S. Kurepa, Semigroups and cosine functions, Lecture Notes in Math., 948, Springer, Berlin, 1982 | MR

[10] M. Sova, “Cosine operator functions”, Rozprawy Mat., 49 (1966), 1–46 | MR

[11] H. O. Fattorini, “A note on fractional derivatives of semigroups and cosine functions”, Pasif. J. Math., 109:2 (1983), 335–347 | DOI | MR | Zbl

[12] H. O. Fattorini, Second order linear differential equations in Banach spaces, North Holland, Amsterdam, 1985 | MR | Zbl