@article{ZNSL_2019_480_a1,
author = {A. B. Aleksandrov},
title = {Some remarks concerning operator {Lipschitz} functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--47},
year = {2019},
volume = {480},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a1/}
}
A. B. Aleksandrov. Some remarks concerning operator Lipschitz functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 26-47. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a1/
[1] A. B. Aleksandrov, “Operatorno lipshitsevy funktsii i modelnye prostranstva”, Zap. nauchn. sem. POMI, 416, 2013, 5–58
[2] A. B. Aleksandrov, “Kommutatorno lipshitsevy funktsii i analiticheskoe prodolzhenie”, Zap. nauchn. sem. POMI, 434, 2015, 5–18
[3] A. B. Aleksandrov, V. V. Peller, “Operatorno lipshitsevy funktsii”, UMN, 71:4(430) (2016), 3–106 | DOI | MR | Zbl
[4] B. E. Johnson, J. P. Williams, “The range of a normal derivation”, Pacific J. Math., 58 (1975), 105–122 | DOI | MR | Zbl
[5] H. Kamowitz, “On operators whose spectrum lies on a circle or a line”, Pacific J. Math., 20 (1967), 65–68 | DOI | MR | Zbl
[6] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. I. Operator-Lipschitz functions”, Proc. Edinb. Math. Soc. (2), 48 (2005), 151–173 | DOI | MR | Zbl
[7] R. Felps, Lektsii o teoremakh Shoke, Mir, M., 1968
[8] G. Pisier, Similarity problems and completely bounded maps, Includes the solution to “The Halmos problem”, Lecture Notes in Mathematics, 1618, Second, expanded edition, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl