Eisenstein's program and modular forms
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 160-170

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an identity for sum of the theta-series, related to an imaginary quadratic field. This sum is expressed in terms of a certain Eisenstein series. The obtained identity is used for a new proof of a formula, giving the exact number of integral points in a certain system of ellipses. Such formulas are interesting in view of relations to arithmetic Riemann–Roch theorems.
@article{ZNSL_2019_479_a8,
     author = {A. L. Smirnov},
     title = {Eisenstein's program and modular forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {160--170},
     publisher = {mathdoc},
     volume = {479},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Eisenstein's program and modular forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 160
EP  - 170
VL  - 479
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/
LA  - ru
ID  - ZNSL_2019_479_a8
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Eisenstein's program and modular forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 160-170
%V 479
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/
%G ru
%F ZNSL_2019_479_a8
A. L. Smirnov. Eisenstein's program and modular forms. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 160-170. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/