Eisenstein's program and modular forms
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 160-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give an identity for sum of the theta-series, related to an imaginary quadratic field. This sum is expressed in terms of a certain Eisenstein series. The obtained identity is used for a new proof of a formula, giving the exact number of integral points in a certain system of ellipses. Such formulas are interesting in view of relations to arithmetic Riemann–Roch theorems.
@article{ZNSL_2019_479_a8,
     author = {A. L. Smirnov},
     title = {Eisenstein's program and modular forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {160--170},
     year = {2019},
     volume = {479},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Eisenstein's program and modular forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 160
EP  - 170
VL  - 479
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/
LA  - ru
ID  - ZNSL_2019_479_a8
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Eisenstein's program and modular forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 160-170
%V 479
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/
%G ru
%F ZNSL_2019_479_a8
A. L. Smirnov. Eisenstein's program and modular forms. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 160-170. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/

[1] G. Eisenstein, “Geometrischer Beweis des Fundamentaltheorems für die quadratischen Reste”, J. fūr die Reine und Angew. Math., 28 (1844), 246–248 | MR | Zbl

[2] A. L. Smirnov, “O tochnykh formulakh dlya chisla tselykh tochek”, Zap. nauchn. semin. POMI, 413, 2013, 173–182

[3] D. A. Artyushin, A. L. Smirnov, “Formula Eizenshteina i sootvetstvie Dirikhle”, Zap. nauchn. semin. POMI, 469, 2018, 7–31

[4] H. I. S. Orde, “On Dirichlet's Class Number Formula”, J. of the London Math. Soc. (2), 18:3 (1978), 409–420 | DOI | MR | Zbl

[5] B. Schoeneberg, Elliptic Modular Functions, Grundl. Math. Wiss., 203, Springer-Verlag, 1974 | MR | Zbl

[6] E. Gekke, Lektsii po teorii algebraicheskikh chisel, 1940

[7] F. Diamond, J. Shurman, A First Course In Modular Forms, Graduate Texts in Mathematics, 228, Springer, 2005 | MR | Zbl

[8] Dzh. Milnor, D. Khyuzmoller, Simmetricheskie bilineinye formy, Nauka, 1986 | MR

[9] T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag, 1976 | MR | Zbl