Eisenstein's program and modular forms
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 160-170
Voir la notice de l'article provenant de la source Math-Net.Ru
We give an identity for sum of the theta-series, related to an imaginary quadratic field. This sum is expressed in terms of a certain Eisenstein series. The obtained identity is used for a new proof of a formula, giving the exact number of integral points in a certain system of ellipses. Such formulas are interesting in view of relations to arithmetic Riemann–Roch theorems.
@article{ZNSL_2019_479_a8,
author = {A. L. Smirnov},
title = {Eisenstein's program and modular forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {160--170},
publisher = {mathdoc},
volume = {479},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/}
}
A. L. Smirnov. Eisenstein's program and modular forms. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 160-170. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a8/