Witt vectors and the field with one element
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 146-159

Voir la notice de l'article provenant de la source Math-Net.Ru

Witt vectors for Durov's generalized rings are constructed. The ring of Witt vectors for the field with one element is calculated. A criterion for the projectivity of modules over the residue field at archimedian point is given. This residue field is compared with the semiring of characteristic 1 in a construction of Connes and Consani.
@article{ZNSL_2019_479_a7,
     author = {A. L. Smirnov},
     title = {Witt vectors and the field with one element},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--159},
     publisher = {mathdoc},
     volume = {479},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a7/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Witt vectors and the field with one element
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 146
EP  - 159
VL  - 479
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a7/
LA  - ru
ID  - ZNSL_2019_479_a7
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Witt vectors and the field with one element
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 146-159
%V 479
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a7/
%G ru
%F ZNSL_2019_479_a7
A. L. Smirnov. Witt vectors and the field with one element. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 146-159. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a7/