On some trigonometric sums related to the Airy function
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 137-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Complex functions over finite fields and analog to the Airy differential equation are considered. Solution is given in terms of some cubic trigonometric sums.
@article{ZNSL_2019_479_a6,
     author = {N. V. Proskurin},
     title = {On some trigonometric sums related to the {Airy} function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--145},
     year = {2019},
     volume = {479},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a6/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On some trigonometric sums related to the Airy function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 137
EP  - 145
VL  - 479
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a6/
LA  - ru
ID  - ZNSL_2019_479_a6
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On some trigonometric sums related to the Airy function
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 137-145
%V 479
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a6/
%G ru
%F ZNSL_2019_479_a6
N. V. Proskurin. On some trigonometric sums related to the Airy function. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 137-145. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a6/

[1] R. J. Evans, “Hermite character sums”, Pacific J. Math., 122:2 (1986), 357–390 | DOI | MR | Zbl

[2] Jean-Pierre Serre, A Course d'arithmétique, Presses Universitaires de France, Paris, 1970 | MR

[3] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math., 84, Springer-Verlag, 1990 | DOI | MR | Zbl

[4] R. Lidl, H. Niederreiter, Finite fields, Second edition, Cambridge University Press, 1997 | MR

[5] W. Duke, H. Iwaniec, “A relation between cubic exponential and Kloosterman sums”, Contemporary Math., 143, 1993, 255–258 | DOI | MR | Zbl