On some trigonometric sums related to the Airy function
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 137-145
Voir la notice du chapitre de livre
Complex functions over finite fields and analog to the Airy differential equation are considered. Solution is given in terms of some cubic trigonometric sums.
@article{ZNSL_2019_479_a6,
author = {N. V. Proskurin},
title = {On some trigonometric sums related to the {Airy} function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--145},
year = {2019},
volume = {479},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a6/}
}
N. V. Proskurin. On some trigonometric sums related to the Airy function. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 137-145. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a6/
[1] R. J. Evans, “Hermite character sums”, Pacific J. Math., 122:2 (1986), 357–390 | DOI | MR | Zbl
[2] Jean-Pierre Serre, A Course d'arithmétique, Presses Universitaires de France, Paris, 1970 | MR
[3] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math., 84, Springer-Verlag, 1990 | DOI | MR | Zbl
[4] R. Lidl, H. Niederreiter, Finite fields, Second edition, Cambridge University Press, 1997 | MR
[5] W. Duke, H. Iwaniec, “A relation between cubic exponential and Kloosterman sums”, Contemporary Math., 143, 1993, 255–258 | DOI | MR | Zbl