On some trigonometric sums related to the Airy function
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 137-145
Cet article a éte moissonné depuis la source Math-Net.Ru
Complex functions over finite fields and analog to the Airy differential equation are considered. Solution is given in terms of some cubic trigonometric sums.
@article{ZNSL_2019_479_a6,
author = {N. V. Proskurin},
title = {On some trigonometric sums related to the {Airy} function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--145},
year = {2019},
volume = {479},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a6/}
}
N. V. Proskurin. On some trigonometric sums related to the Airy function. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 137-145. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a6/
[1] R. J. Evans, “Hermite character sums”, Pacific J. Math., 122:2 (1986), 357–390 | DOI | MR | Zbl
[2] Jean-Pierre Serre, A Course d'arithmétique, Presses Universitaires de France, Paris, 1970 | MR
[3] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math., 84, Springer-Verlag, 1990 | DOI | MR | Zbl
[4] R. Lidl, H. Niederreiter, Finite fields, Second edition, Cambridge University Press, 1997 | MR
[5] W. Duke, H. Iwaniec, “A relation between cubic exponential and Kloosterman sums”, Contemporary Math., 143, 1993, 255–258 | DOI | MR | Zbl