A short proof of a theorem due to O.~Gabber
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 131-136

Voir la notice de l'article provenant de la source Math-Net.Ru

A very short proof of an unpublished result due to O. Gabber is given. More presicely, let $R$ be a regular local ring, containing a finite field $k$. Let $\mathbf{G}$ be a simply-connected reductive group scheme over $k$. We prove that a principal $\mathbf{G}$-bundle over $R$ is trivial, if it is trivial over the fraction field of $R$. This is the mentioned unpublished result due to O. Gabber. We derive this result from a purely geometric one proven in another paper of the author and stated in the Introduction.
@article{ZNSL_2019_479_a5,
     author = {I. A. Panin},
     title = {A short proof of a theorem due to {O.~Gabber}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--136},
     publisher = {mathdoc},
     volume = {479},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a5/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - A short proof of a theorem due to O.~Gabber
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 131
EP  - 136
VL  - 479
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a5/
LA  - en
ID  - ZNSL_2019_479_a5
ER  - 
%0 Journal Article
%A I. A. Panin
%T A short proof of a theorem due to O.~Gabber
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 131-136
%V 479
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a5/
%G en
%F ZNSL_2019_479_a5
I. A. Panin. A short proof of a theorem due to O.~Gabber. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 131-136. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a5/