A short proof of a theorem due to O. Gabber
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 131-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A very short proof of an unpublished result due to O. Gabber is given. More presicely, let $R$ be a regular local ring, containing a finite field $k$. Let $\mathbf{G}$ be a simply-connected reductive group scheme over $k$. We prove that a principal $\mathbf{G}$-bundle over $R$ is trivial, if it is trivial over the fraction field of $R$. This is the mentioned unpublished result due to O. Gabber. We derive this result from a purely geometric one proven in another paper of the author and stated in the Introduction.
@article{ZNSL_2019_479_a5,
     author = {I. A. Panin},
     title = {A short proof of a theorem due to {O.~Gabber}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--136},
     year = {2019},
     volume = {479},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a5/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - A short proof of a theorem due to O. Gabber
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 131
EP  - 136
VL  - 479
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a5/
LA  - en
ID  - ZNSL_2019_479_a5
ER  - 
%0 Journal Article
%A I. A. Panin
%T A short proof of a theorem due to O. Gabber
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 131-136
%V 479
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a5/
%G en
%F ZNSL_2019_479_a5
I. A. Panin. A short proof of a theorem due to O. Gabber. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 131-136. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a5/

[1] J.-L. Colliot-Thélène, M. Ojanguren, “Espaces Principaux Homogènes Localement Triviaux”, Publ. Math. IHÉS, 75:2 (1992), 97–122 | DOI | MR | Zbl

[2] M. Demazure, A. Grothendieck, Schémas en groupes, Lect. Notes Math., 151–153, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR

[3] R. Fedorov, I. Panin, “A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields”, Publ. Math. de l'IHES, 122:1 (2015), 169–193 | DOI | MR | Zbl

[4] O. Gabber, announced and still unpublished

[5] A. Grothendieck, “Torsion homologique et section rationnalles”, Anneaux de Chow et applications, Séminaire Chevalley, 2-e, Secrétariat mathématique, Paris, 1958 | MR

[6] A. Grothendieck, Le group de Brauer, v. II, Dix exposés sur la cohomologique de schémes, North-Holland, Amsterdam, 1968 | MR

[7] A. Grothendieck, “Technique de descente et theoremes d'existence en geometrie algebrique: I. Generalites. Descente par morphismes delement plats”, Seminaire Bourbaki, 5, no. 190, Soc. Math. France, Paris, 1995, 299–327 | MR

[8] F. Morel, V. Voevodsky, “$A^1$-homotopy theory of schemes”, Publ. Math. IHÉS, 90 (1999), 45–143 | DOI | MR | Zbl

[9] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compositio Math., 151 (2015), 535–567 | DOI | MR | Zbl

[10] I. Panin, “Nice triples and moving lemmas for motivic spaces”, Izv. RAN, Ser. Mat., 83:4 (2019), 158–193 | DOI | MR | Zbl

[11] I. Panin, “On Grothendieck–Serre conjecture concering principal bundles”, Proc. International Congress of Mathematics (Rio de Janeiro, 2018), v. 1, 201–222 | MR

[12] I. Panin, “Nice triples and Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes”, Duke M. J., 168:2 (2019), 351–375 | DOI | MR | Zbl

[13] I. Panin, Two purity theorems and Grothendieck–Serre's conjecture concerning principal $G$-bundles over regular semi-local rings, arXiv: 1707.01763 | MR

[14] I. Panin, Proof of Grothendieck–Serre conjecture on principal $G$-bundles over semi-local regular domains containing a finite field, arXiv: 1707.01767

[15] D. Popescu, “General Néron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115 | DOI | MR | Zbl

[16] M. S. Raghunathan, “Principal bundles admitting a rational section”, Invent. Math., 116:1–3 (1994), 409–423 | DOI | MR | Zbl

[17] M. S. Raghunathan, “Erratum: Principal bundles admitting a rational section”, Invent. Math., 121:1 (1995), 223 | DOI | MR | Zbl

[18] J.-P. Serre, “Espaces fibrés algébriques”, Anneaux de Chow et applications, Séminaire Chevalley, 2, Secrétariat mathématique, Paris, 1958 | MR

[19] R. G. Swan, “Néron–Popescu desingularization”, Algebra and Geometry (Taipei, 1995), Lect. Algebra Geom., 2, Internat. Press, Cambridge, MA, 1998, 135–192 | MR

[20] V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, Transfers, and Motivic Homology Theories, Ann. Math. Studies, Princeton University Press, 2000 | MR