New probabilistic primality test
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 121-130

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a new general probabilistic test for primality. The estimated efficiency of our test turns out to be inferior to that of the Miller–Rabin test. However, we provide some heuristic arguments that our estimation of efficiency is quite rough. This allows us to expect that the real efficiency of our test is much greater.
@article{ZNSL_2019_479_a4,
     author = {A. G. Moshonkin and I. M. Khamitov},
     title = {New probabilistic primality test},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--130},
     publisher = {mathdoc},
     volume = {479},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a4/}
}
TY  - JOUR
AU  - A. G. Moshonkin
AU  - I. M. Khamitov
TI  - New probabilistic primality test
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 121
EP  - 130
VL  - 479
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a4/
LA  - ru
ID  - ZNSL_2019_479_a4
ER  - 
%0 Journal Article
%A A. G. Moshonkin
%A I. M. Khamitov
%T New probabilistic primality test
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 121-130
%V 479
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a4/
%G ru
%F ZNSL_2019_479_a4
A. G. Moshonkin; I. M. Khamitov. New probabilistic primality test. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 121-130. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a4/