@article{ZNSL_2019_479_a4,
author = {A. G. Moshonkin and I. M. Khamitov},
title = {New probabilistic primality test},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--130},
year = {2019},
volume = {479},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a4/}
}
A. G. Moshonkin; I. M. Khamitov. New probabilistic primality test. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 121-130. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a4/
[1] R. M. Robinson, “Mersenne and Fermat Numbers”, Proc. Amer. Math. Soc., 5 (1954), 842–846 | DOI | MR | Zbl
[2] M. Agrawal, N. Kayal, N. Saxena, “Primes is in $P$”, Ann. of Math. (2), 160:2 (2004), 781–793 | DOI | MR | Zbl
[3] E. Lucas, “Theorie des fonctions numeriques simplement periodiques”, Amer. J. Math., 1:2–4 (1878), 184–240 (French) ; 289–321 | DOI | MR | Zbl
[4] W. R. Alford, A. Granville, C. Pomerance, “There are infinitely many Carmichael numbers”, Ann. of Math., 139 (1994), 703–722 | DOI | MR | Zbl
[5] R. Solovay, V. Strassen, “A fast Monte-Carlo test for primality”, SIAM J. Comput., 6:1 (1977), 84–85 | DOI | MR | Zbl
[6] M. O. Rabin, “Probabilistic algorithm for testing primality”, J. Number Theory, 12:1 (1980), 128–138 | DOI | MR | Zbl
[7] M. Baker, Cipolla's algorithm for finding square roots mod p, http://people.math.gatech.edu/m̃baker/pdf/cipolla2011.pdf