Local algorithm for constructing the derived tilings of two-dimensional torus
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 85-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The local structure of the derived tilings $\mathcal{T}$ of two-dimensional torus $\mathbb{T}^2$ is investigated. Polygonal types of the stars in these tilings are classified. It is proved that in the nondegenerate case the tilings $\mathcal{T}$ contain 7 different types of stars and all types are representable by the stars with inner vertices from the crown $\mathbf{Cr}$ of the tiling $\mathcal{T}$. There sets the maximum principle being the basis of the $LLG$ algorithm for layer-by-layer growth of the derived tilings $\mathcal{T}$.
@article{ZNSL_2019_479_a3,
     author = {V. G. Zhuravlev},
     title = {Local algorithm for constructing the derived tilings of two-dimensional torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--120},
     year = {2019},
     volume = {479},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Local algorithm for constructing the derived tilings of two-dimensional torus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 85
EP  - 120
VL  - 479
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a3/
LA  - ru
ID  - ZNSL_2019_479_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Local algorithm for constructing the derived tilings of two-dimensional torus
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 85-120
%V 479
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a3/
%G ru
%F ZNSL_2019_479_a3
V. G. Zhuravlev. Local algorithm for constructing the derived tilings of two-dimensional torus. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 85-120. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a3/

[1] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, August 2015, arXiv: 1508.07814 | MR

[2] V. Berthe, S. Labbe, “Factor complexity of S-adic words generated by the Arnoux-Rauzy-Poincare algorithm”, Advances in Applied Mathematics, 63, 2015, 90–130 | DOI | MR | Zbl

[3] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki 18–23 aout 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR

[4] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting (LIAFA, Paris, October 12th, 2015)

[5] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1–3 (1995), 373–401 | DOI | MR | Zbl

[6] G. Rauzy, Ensembles à restes bornés, Séminaire de théorie des nombres de Bordeaux, 24, 1984 | MR

[7] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9 (1961), 37–43 | MR | Zbl

[8] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR

[9] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR

[10] V. G. Zhuravlev, “On additive property of a complexity function related to Rauzy tiling”, Anal. Probab. Methods Number Theory, eds. E. Manstavicius et al., TEV, Vilnius, 2007, 240–254 | MR | Zbl

[11] V. G. Zhuravlev, “Samopodobnyi rost periodicheskikh razbienii i grafov”, Algebra i analiz, 13:2 (2001), 69–92

[12] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 322, 2005, 83–106 | Zbl

[13] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 287–321 | MR

[14] V. G. Zhuravlev, A. V. Maleev, “Funktsiya slozhnosti i forsing v dvumernom kvaziperiodicheskom razbienii Rozi”, Kristallografiya, 52:4 (2007), 610–616

[15] V. G. Zhuravlev, “Parametrizatsiya dvumernogo kvaziperiodicheskogo razbieniya Rozi”, Algebra i analiz, 22:4 (2010), 21–56

[16] V. G. Zhuravlev, “Delyaschiesya razbieniya tora i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 440, 2015, 99–122

[17] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauchn. semin. POMI, 440, 2015, 81–98

[18] V. G. Zhuravlev, “Mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 445, 2016, 93–174

[19] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 445, 2016, 33–92

[20] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195

[21] V. G. Zhuravlev, “Periodicheskie yadernye razlozheniya kubicheskikh irratsionalnostei v tsepnye drobi”, Matematika i informatika, K 80-letiyu so dnya rozhdeniya A. A. Karatsuby, Sovrem. probl. mat., 23, MIAN, M., 2016, 41–66

[22] V. G. Zhuravlev, “Periodicheskie yadernye razlozheniya edinits algebraicheskikh polei v tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 84–129

[23] V. G. Zhuravlev, “Yadernye razlozheniya chisel Pizo v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 130–167

[24] A. Ya. Khinchin, Tsepnye drobi, 4-e izd., Nauka, M., 1978 | MR