The best approximation of algebraic numbers by multidimensional continued fractions
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 52-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A karyon-modular algorithm ($\mathcal {KM}$-algorithm) is proposed for decomposition of algebraic numbers $\alpha = (\alpha_1, \ldots, \alpha_d)$ from $\mathbb {R}^{d}$ to multidimensional continued fractions, that are a sequence of rational numbers $$ \frac{P_{a}}{Q_{a}}=\Bigl( \frac{P^{a}_1}{Q^{a}},\ldots,\frac{P^{a}_d}{Q^{a}}\Bigr), a=1,2,3,\ldots, $$ from $\mathbb{Q}^d$ with numerators $P^{a}_1,\ldots,P^{a}_d \in \mathbb{Z}$ and the common denominator $Q^{a}=1,2,3,\ldots$ The $ \mathcal{KM}$-algorithm belongs to a class of tuning algorithms. It is based on the construction of localized Pisot units $\zeta>1$, for which the moduli of all conjugates $\zeta^{(i)}\ne \zeta $ are contained in the $ \theta $-neighbourhood of the number $ \zeta^{- 1 /d}$, where the parameter $ \theta> 0 $ can take an arbitrary fixed value. It is proved that if $ \alpha $ is a real algebraic point of degree $ \mathrm {deg} (\alpha) = d + 1 $, then $ \mathcal {KM} $ - algorithm allows to obtain the following approximation $$ \Bigl | \alpha - \frac {P_{a}}{Q_{a}} \Bigr | \leq \frac {c} {Q^{1+ \frac{1}{d} - \theta}_{a}} $$ for all $ a \geq a_{\alpha, \theta} $, where the constants $ a_{\alpha, \theta}> 0 $ and $ c = c_{\alpha, \theta}> 0 $ do not depend on $ a = 1,2,3, \ldots $ and the convergent fractions $ \frac {P_{a}} {Q_{a}} $ are calculated by means of some recurrence relation with constant coefficients determined by the choice of the localized units $ \zeta $.
@article{ZNSL_2019_479_a2,
     author = {V. G. Zhuravlev},
     title = {The best approximation of algebraic numbers by multidimensional continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--84},
     year = {2019},
     volume = {479},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - The best approximation of algebraic numbers by multidimensional continued fractions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 52
EP  - 84
VL  - 479
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a2/
LA  - ru
ID  - ZNSL_2019_479_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T The best approximation of algebraic numbers by multidimensional continued fractions
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 52-84
%V 479
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a2/
%G ru
%F ZNSL_2019_479_a2
V. G. Zhuravlev. The best approximation of algebraic numbers by multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 52-84. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a2/

[1] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauch. semin. POMI, 449, 2016, 168–195

[2] A. Ya. Khinchin, Tsepnye drobi, 4-e izd., Nauka, M., 1978 | MR

[3] I. M. Vinogradov, Osnovy teorii chisel, 5-e izd., Nauka, M., 1972 | MR

[4] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 445, 2016, 33–92

[5] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 1–20

[6] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki 18-23 aout 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR

[7] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9 (1961), 37–43 | MR | Zbl

[8] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1-3 (1995), 373–401 | DOI | MR | Zbl

[9] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR

[10] V. Berthe, S. Labbe, “Factor complexity of S-adic words generated by the Arnoux-Rauzy-Poincare algorithm”, Advances in Applied Mathematics, 63 (2015), 90–130 | DOI | MR | Zbl

[11] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, August 2015, arXiv: 1508.07814 | MR

[12] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting (LIAFA, Paris, October 12th, 2015)

[13] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Vtoroe izd., Nauka, M., 1972

[14] V. G. Zhuravlev, “Lokalizovannye edinitsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 458, 2017, 104–134

[15] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145

[16] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR

[17] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952 | MR

[18] V. G. Zhuravlev, “Unimodulyarnost indutsirovannykh razbienii tora”, Zap. nauch. semin. POMI, 469, 2018, 96–137

[19] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, Iz-vo inostrannoi literatury, M., 1961