@article{ZNSL_2019_479_a2,
author = {V. G. Zhuravlev},
title = {The best approximation of algebraic numbers by multidimensional continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--84},
year = {2019},
volume = {479},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a2/}
}
V. G. Zhuravlev. The best approximation of algebraic numbers by multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 52-84. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a2/
[1] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauch. semin. POMI, 449, 2016, 168–195
[2] A. Ya. Khinchin, Tsepnye drobi, 4-e izd., Nauka, M., 1978 | MR
[3] I. M. Vinogradov, Osnovy teorii chisel, 5-e izd., Nauka, M., 1972 | MR
[4] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 445, 2016, 33–92
[5] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 1–20
[6] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki 18-23 aout 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR
[7] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9 (1961), 37–43 | MR | Zbl
[8] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1-3 (1995), 373–401 | DOI | MR | Zbl
[9] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR
[10] V. Berthe, S. Labbe, “Factor complexity of S-adic words generated by the Arnoux-Rauzy-Poincare algorithm”, Advances in Applied Mathematics, 63 (2015), 90–130 | DOI | MR | Zbl
[11] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, August 2015, arXiv: 1508.07814 | MR
[12] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting (LIAFA, Paris, October 12th, 2015)
[13] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Vtoroe izd., Nauka, M., 1972
[14] V. G. Zhuravlev, “Lokalizovannye edinitsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 458, 2017, 104–134
[15] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145
[16] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR
[17] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952 | MR
[18] V. G. Zhuravlev, “Unimodulyarnost indutsirovannykh razbienii tora”, Zap. nauch. semin. POMI, 469, 2018, 96–137
[19] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, Iz-vo inostrannoi literatury, M., 1961