@article{ZNSL_2019_479_a0,
author = {N. Vavilov},
title = {Commutators of congruence subgroups in the arithmetic case},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--22},
year = {2019},
volume = {479},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a0/}
}
N. Vavilov. Commutators of congruence subgroups in the arithmetic case. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 5-22. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a0/
[1] A. Bak, A. Stepanov, “Dimension theory and nonstable $\mathrm{K}$-theory for net groups”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl
[2] H. Bass, “$\mathrm{K}$-Theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22, 1964, 5–60 | DOI | MR
[3] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ $(n\ge 3)$ and $\mathrm{Sp}_{2n}$ $(n\ge 2)$”, Publ. Math. Inst. Hautes Etudes Sci., 33 (1967), 59–137 | DOI | MR | Zbl
[4] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 3 (1985), 27–46 | MR
[5] D. Carter, G. E. Keller, “Bounded elementary generation of $\mathrm{SL}_n({ \mathcal O})$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl
[6] D. L. Costa, G. E. Keller, “The $\mathrm{E}(2,A)$ sections of $\mathrm{SL}(2,A)$”, Ann. Math., 134:1 (1991), 159–188 | DOI | MR | Zbl
[7] D. L. Costa, G. E. Keller, “Power residue symbol and the central sections of $\mathrm{SL}(2,A)$”, $\mathrm{K}$-Theory, 15:1 (1998), 33–98 | DOI | MR | Zbl
[8] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-Theory, Springer, Berlin et al., 1989 | MR
[9] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators”, J. Math. Sci., 179:6 (2011), 662–678 | DOI | MR | Zbl
[10] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl
[11] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators, further applications”, J. Math. Sci., 200:6 (2014), 742–768 | DOI | MR | Zbl
[12] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm{K}$-Theory of rings (with an appendix by Max Karoubi)”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[13] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in unitary groups, and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl
[14] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in Chevalley groups”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl
[15] R. Hazrat, N. Vavilov, Zuhong Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinburgh Math. Soc., 59 (2016), 393–410 | DOI | MR | Zbl
[16] R. Hazrat, N. Vavilov, Zuhong Zhang, “Multiple commutator formulas for unitary groups”, Israel Journal Math., 219:1 (2017), 287–330 | DOI | MR | Zbl
[17] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., 222:4 (2017), 466–515 | DOI | MR | Zbl
[18] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Commun. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl
[19] R. Hazrat, Zuhong Zhang, “Multiple commutator formula”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl
[20] W. van der Kallen, “A group structure on certain orbit sets of unimodular rows”, J. Algebra, 82 (1983), 363–397 | DOI | MR | Zbl
[21] A. Lavrenov, S. Sinchuk, A Horrocks-type theorem for even orthogonal $\mathrm{K}_2$, 2019, 23 pp., arXiv: 1909.02637v1 [math.GR]
[22] A. Leutbecher, “Euklidischer Algorithmus und die Gruppe $\mathrm{GL}_2$”, Math. Ann., 231 (1978), 269–285 | DOI | MR | Zbl
[23] B. Liehl, “On the group $\mathrm{SL}_2$ over orders of arithmetic type”, J. reine angew. Math., 323 (1981), 153–171 | MR | Zbl
[24] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl
[25] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl
[26] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup., Ser. 4, 2:1 (1969), 1–62 | MR | Zbl
[27] J. L. Mennicke, “A remark on the congruence subgroup problem”, Math. Scand., 86:2 (2000), 206–222 | DOI | MR | Zbl
[28] B. Nica, “A true relative of Suslin's normality theorem”, Enseign. Math., 61:1–2 (2015), 151–159 | DOI | MR | Zbl
[29] B. Nica, On bounded elementary generation for $\mathrm{SL}_n$ over polynomial rings, 2019, 6 pp., arXiv: 1901.00587v1 [math.GR] | MR
[30] J.-P. Serre, “Le probleme des groupes de congruence pour $\mathrm{SL}_2$”, Ann. Math., 92:3 (1970), 489–527 | DOI | MR | Zbl
[31] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl
[32] A. V. Stepanov, Structure theory of Chevalley groups over rings, Habilitation, St. Petersburg State Univ., 2013, 113 pp. | MR
[33] A. V. Stepanov, “Non-abelian $\mathrm{K}$-Theory for Chevalley groups over rings”, J. Math. Sci., 209:4 (2015), 645–656 | DOI | MR | Zbl
[34] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl
[35] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm{K}$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl
[36] B. Sury, T. N. Venkataramana, “Generators for all principal congruence subgroups of $\mathrm{SL}(n,\mathbb{Z})$ with $n\ge 3$”, Proc. Amer. Math. Soc., 122:2 (1994), 355–358 | MR | Zbl
[37] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–253 | DOI | MR
[38] O. I. Tavgen, “Bounded generation of Chevalley groups over rings of $S$-integer algebraic numbers”, Izv. Acad. Sci. USSR, 54:1 (1990), 97–122 | MR | Zbl
[39] J. Tits, “Systèmes générateurs de groupes de congruence”, C. R. Acad. Sci. Paris, Sér A, 283 (1976), 693–695 | MR
[40] L. N. Vaserstein, “On the group $\mathrm{SL}_2$ over Dedekind rings of arithmetic type”, Mat. Sb., 89:2 (1972), 313–322 | MR
[41] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm{K}$-Theory, Evanston (1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR
[42] L. N. Vaserstein, A. A. Suslin, “Serre's problem on projective modules over polynomial rings, and algebraic K-theory”, Math. USSR Izv., 10 (1978), 937–1001 | DOI | MR | Zbl
[43] N. Vavilov, “Parabolic subgroups of the full linear group over a Dedekind ring of arithmetical type”, J. Sov. Math., 20 (1982), 2546–2555 | DOI | MR | Zbl
[44] N. Vavilov, “On the group $\mathrm{SL}_n$ over a Dedekind domain of arithmetic type”, Vestn. Leningr. Univ., Mat. Mekh. Astron., 1983, no. 2, 5–10 | MR | Zbl
[45] N. Vavilov, “Unrelativised standard commutator formula”, Zapiski Nauchnyh Seminarov POMI, 470, 2018, 38–49 | MR
[46] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ., Ser. 1, 41:1 (2008), 5–8 | MR | Zbl
[47] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ., Ser. 1, 43:1 (2010), 12–17 | MR | Zbl
[48] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl
[49] N. Vavilov, Zuhong Zhang, “Generation of relative commutator subgroups in Chevalley groups, II”, Proc. Edinburgh Math. Soc., 2019 | MR
[50] Hong You, “On subgroups of Chevalley groups which are generated by commutators”, J. Northeast Normal Univ., 1992, no. 2, 9–13 | MR