Commutators of congruence subgroups in the arithmetic case
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 5-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In our joint paper with Alexei Stepanov it was established that for any two comaximal ideals $A$ and $B$ of a commutative ring $R$, $A+B=R$, and any $n\ge 3$ one has $[E(n,R,A),E(n,R,B)]=E(n,R,AB)$. Alec Mason and Wilson Stothers constructed counterexamples that show that the above equality may fail when $A$ and $B$ are not comaximal, even for such nice rings as $\mathbb{Z}[i]$. In the present note, we establish a rather striking result that this equality, and thus also the stronger equality $[\mathrm{GL}(n,R,A),\mathrm{GL}(n,R,B)]=E(n,R,AB)$, do hold when $R$ is a Dedekind ring of arithmetic type with infinite multiplicative group. The proof is a blend of elementary calculations in the spirit of the previous papers by Wilberd van der Kallen, Roozbeh Hazrat, Zuhong Zhang, Alexei Stepanov, and the author, and an explicit computation of multirelative $\mathrm{SK}_1$ from my 1982 paper, which in turn relied on very deep arithmetical results by Jean-Pierre Serre, and Leonid Vaserstein (as corrected by Armin Leutbecher and Bernhard Liehl).
@article{ZNSL_2019_479_a0,
     author = {N. Vavilov},
     title = {Commutators of congruence subgroups in the arithmetic case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--22},
     year = {2019},
     volume = {479},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a0/}
}
TY  - JOUR
AU  - N. Vavilov
TI  - Commutators of congruence subgroups in the arithmetic case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 5
EP  - 22
VL  - 479
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a0/
LA  - en
ID  - ZNSL_2019_479_a0
ER  - 
%0 Journal Article
%A N. Vavilov
%T Commutators of congruence subgroups in the arithmetic case
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 5-22
%V 479
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a0/
%G en
%F ZNSL_2019_479_a0
N. Vavilov. Commutators of congruence subgroups in the arithmetic case. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 5-22. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a0/

[1] A. Bak, A. Stepanov, “Dimension theory and nonstable $\mathrm{K}$-theory for net groups”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl

[2] H. Bass, “$\mathrm{K}$-Theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22, 1964, 5–60 | DOI | MR

[3] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ $(n\ge 3)$ and $\mathrm{Sp}_{2n}$ $(n\ge 2)$”, Publ. Math. Inst. Hautes Etudes Sci., 33 (1967), 59–137 | DOI | MR | Zbl

[4] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 3 (1985), 27–46 | MR

[5] D. Carter, G. E. Keller, “Bounded elementary generation of $\mathrm{SL}_n({ \mathcal O})$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl

[6] D. L. Costa, G. E. Keller, “The $\mathrm{E}(2,A)$ sections of $\mathrm{SL}(2,A)$”, Ann. Math., 134:1 (1991), 159–188 | DOI | MR | Zbl

[7] D. L. Costa, G. E. Keller, “Power residue symbol and the central sections of $\mathrm{SL}(2,A)$”, $\mathrm{K}$-Theory, 15:1 (1998), 33–98 | DOI | MR | Zbl

[8] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-Theory, Springer, Berlin et al., 1989 | MR

[9] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators”, J. Math. Sci., 179:6 (2011), 662–678 | DOI | MR | Zbl

[10] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[11] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators, further applications”, J. Math. Sci., 200:6 (2014), 742–768 | DOI | MR | Zbl

[12] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm{K}$-Theory of rings (with an appendix by Max Karoubi)”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[13] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in unitary groups, and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl

[14] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in Chevalley groups”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl

[15] R. Hazrat, N. Vavilov, Zuhong Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinburgh Math. Soc., 59 (2016), 393–410 | DOI | MR | Zbl

[16] R. Hazrat, N. Vavilov, Zuhong Zhang, “Multiple commutator formulas for unitary groups”, Israel Journal Math., 219:1 (2017), 287–330 | DOI | MR | Zbl

[17] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., 222:4 (2017), 466–515 | DOI | MR | Zbl

[18] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Commun. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl

[19] R. Hazrat, Zuhong Zhang, “Multiple commutator formula”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl

[20] W. van der Kallen, “A group structure on certain orbit sets of unimodular rows”, J. Algebra, 82 (1983), 363–397 | DOI | MR | Zbl

[21] A. Lavrenov, S. Sinchuk, A Horrocks-type theorem for even orthogonal $\mathrm{K}_2$, 2019, 23 pp., arXiv: 1909.02637v1 [math.GR]

[22] A. Leutbecher, “Euklidischer Algorithmus und die Gruppe $\mathrm{GL}_2$”, Math. Ann., 231 (1978), 269–285 | DOI | MR | Zbl

[23] B. Liehl, “On the group $\mathrm{SL}_2$ over orders of arithmetic type”, J. reine angew. Math., 323 (1981), 153–171 | MR | Zbl

[24] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl

[25] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl

[26] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup., Ser. 4, 2:1 (1969), 1–62 | MR | Zbl

[27] J. L. Mennicke, “A remark on the congruence subgroup problem”, Math. Scand., 86:2 (2000), 206–222 | DOI | MR | Zbl

[28] B. Nica, “A true relative of Suslin's normality theorem”, Enseign. Math., 61:1–2 (2015), 151–159 | DOI | MR | Zbl

[29] B. Nica, On bounded elementary generation for $\mathrm{SL}_n$ over polynomial rings, 2019, 6 pp., arXiv: 1901.00587v1 [math.GR] | MR

[30] J.-P. Serre, “Le probleme des groupes de congruence pour $\mathrm{SL}_2$”, Ann. Math., 92:3 (1970), 489–527 | DOI | MR | Zbl

[31] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl

[32] A. V. Stepanov, Structure theory of Chevalley groups over rings, Habilitation, St. Petersburg State Univ., 2013, 113 pp. | MR

[33] A. V. Stepanov, “Non-abelian $\mathrm{K}$-Theory for Chevalley groups over rings”, J. Math. Sci., 209:4 (2015), 645–656 | DOI | MR | Zbl

[34] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[35] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm{K}$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[36] B. Sury, T. N. Venkataramana, “Generators for all principal congruence subgroups of $\mathrm{SL}(n,\mathbb{Z})$ with $n\ge 3$”, Proc. Amer. Math. Soc., 122:2 (1994), 355–358 | MR | Zbl

[37] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–253 | DOI | MR

[38] O. I. Tavgen, “Bounded generation of Chevalley groups over rings of $S$-integer algebraic numbers”, Izv. Acad. Sci. USSR, 54:1 (1990), 97–122 | MR | Zbl

[39] J. Tits, “Systèmes générateurs de groupes de congruence”, C. R. Acad. Sci. Paris, Sér A, 283 (1976), 693–695 | MR

[40] L. N. Vaserstein, “On the group $\mathrm{SL}_2$ over Dedekind rings of arithmetic type”, Mat. Sb., 89:2 (1972), 313–322 | MR

[41] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm{K}$-Theory, Evanston (1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR

[42] L. N. Vaserstein, A. A. Suslin, “Serre's problem on projective modules over polynomial rings, and algebraic K-theory”, Math. USSR Izv., 10 (1978), 937–1001 | DOI | MR | Zbl

[43] N. Vavilov, “Parabolic subgroups of the full linear group over a Dedekind ring of arithmetical type”, J. Sov. Math., 20 (1982), 2546–2555 | DOI | MR | Zbl

[44] N. Vavilov, “On the group $\mathrm{SL}_n$ over a Dedekind domain of arithmetic type”, Vestn. Leningr. Univ., Mat. Mekh. Astron., 1983, no. 2, 5–10 | MR | Zbl

[45] N. Vavilov, “Unrelativised standard commutator formula”, Zapiski Nauchnyh Seminarov POMI, 470, 2018, 38–49 | MR

[46] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ., Ser. 1, 41:1 (2008), 5–8 | MR | Zbl

[47] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ., Ser. 1, 43:1 (2010), 12–17 | MR | Zbl

[48] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl

[49] N. Vavilov, Zuhong Zhang, “Generation of relative commutator subgroups in Chevalley groups, II”, Proc. Edinburgh Math. Soc., 2019 | MR

[50] Hong You, “On subgroups of Chevalley groups which are generated by commutators”, J. Northeast Normal Univ., 1992, no. 2, 9–13 | MR