Homology of free nilpotent Lie rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 202-210

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the results of calculations of integer homology of free nilpotent Lie algebras $H_i(L(x_1,\dots,x_r)/\gamma_{N+1})$ in the system of computational algebra GAP. Our attention was focused on the occurrence of unexpected torsion in these homology, similar to the one that arises for $4$-generated free nilpotent groups of class $2$. The main result is that even for two generators torsion occurs in the fourth integer homology when the nilpotency class is $5$. Moreover, only a $7$-torsion occurs, and no others. Namely, there is an isomorphism $H_4(L(x_1,x_2)/\gamma_{6})\cong \mathbb Z^{85}\oplus \mathbb Z/7$.
@article{ZNSL_2019_478_a9,
     author = {V. R. Romanovskiǐ},
     title = {Homology of free nilpotent {Lie} rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--210},
     publisher = {mathdoc},
     volume = {478},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a9/}
}
TY  - JOUR
AU  - V. R. Romanovskiǐ
TI  - Homology of free nilpotent Lie rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 202
EP  - 210
VL  - 478
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a9/
LA  - ru
ID  - ZNSL_2019_478_a9
ER  - 
%0 Journal Article
%A V. R. Romanovskiǐ
%T Homology of free nilpotent Lie rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 202-210
%V 478
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a9/
%G ru
%F ZNSL_2019_478_a9
V. R. Romanovskiǐ. Homology of free nilpotent Lie rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 202-210. http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a9/