@article{ZNSL_2019_478_a7,
author = {Li Lu},
title = {$Gr$-injective modules and $gr$-projective modules over $G$-graded commutative rings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--193},
year = {2019},
volume = {478},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a7/}
}
Li Lu. $Gr$-injective modules and $gr$-projective modules over $G$-graded commutative rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 172-193. http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a7/
[1] D. D. Anderson, D. F. Anderson, “Divisibility properties of graded domains”, Canad. J. Math., 34:1 (1982), 196–215 | DOI | MR | Zbl
[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer Science Business Media, 2012 | MR
[3] M. F. Atiyah, I. G. MacDonald, Introduction to commutative algebra, Westview Press, 2018 | MR
[4] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, 1995 | MR | Zbl
[5] S. Goto, K. Yamagishi, “Finite generation of Noetherian graded rings”, Proceedings of the American Mathematical Society, 89:1 (1983), 41–44 | DOI | MR | Zbl
[6] W. Heinzer, M. Roitman, “The homogeneous spectrum of a graded commutative ring”, Proc. Amer. Math. Soc., 130:6 (2001), 1573–1580 | DOI | MR
[7] C. Nastasescu, F. Van Oystaeyen, Methods of Graded Rings, Springer, 2004 | MR | Zbl
[8] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Elsevier, 2011 | MR
[9] C. Park, M. Park, “Integral closure of a graded Noetherian domain”, J. the Korean Math. Soc., 48:3 (2011), 449–464 | DOI | MR | Zbl
[10] L. J. Ratliff, D. E. Rush, “Two notes on homogeneous prime ideals in graded Noetherian rings”, J. Algebra, 264:1 (2003), 211–230 | DOI | MR | Zbl
[11] J. Rotman, An Introduction to Homological Algebra, Springer, 1988 | MR
[12] D. E. Rush, “Noetherian properties in monoid rings”, J. Pure and Applied Algebra, 185:1–3 (2003), 259–278 | DOI | MR | Zbl
[13] I. N. Balaba, “Koltsa chastnykh graduirovannykh assotsiativnykh kolets. I”, Fundamentalnaya i prikladnaya matematika, 17:2 (2012), 3–74 | MR | Zbl