On Thompson's conjecture for finite simple exceptional groups of Lie type
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 100-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a finite group and $N(G)$ be its set of conjugacy class sizes. In the present paper it is proved $G\simeq L$ if $N(G)=N(L)$, where $G$ is a finite group with trivial center and $L$ is a finite simple group of exceptional Lie type.
@article{ZNSL_2019_478_a4,
     author = {I. B. Gorshkov and I. B. Kaygorodov and A. V. Kukharev and A. A. Shlepkin},
     title = {On {Thompson's} conjecture for finite simple exceptional groups of {Lie} type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--107},
     year = {2019},
     volume = {478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a4/}
}
TY  - JOUR
AU  - I. B. Gorshkov
AU  - I. B. Kaygorodov
AU  - A. V. Kukharev
AU  - A. A. Shlepkin
TI  - On Thompson's conjecture for finite simple exceptional groups of Lie type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 100
EP  - 107
VL  - 478
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a4/
LA  - en
ID  - ZNSL_2019_478_a4
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%A I. B. Kaygorodov
%A A. V. Kukharev
%A A. A. Shlepkin
%T On Thompson's conjecture for finite simple exceptional groups of Lie type
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 100-107
%V 478
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a4/
%G en
%F ZNSL_2019_478_a4
I. B. Gorshkov; I. B. Kaygorodov; A. V. Kukharev; A. A. Shlepkin. On Thompson's conjecture for finite simple exceptional groups of Lie type. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 100-107. http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a4/

[1] V. D. Mazurov, E. I. Khukhro (Eds.), The Kourovka Notebook: Unsolved Problems in Group Theory, 18th edition, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, Russia, 2014, 253 pp. | MR | Zbl

[2] G. Chen, “On Thompson's conjecture”, J. Algebra, 185:1 (1996), 184–193 | DOI | MR | Zbl

[3] G. Chen, “Further reflections on Thompson's conjecture”, J. Algebra, 218:1 (1999), 276–285 | DOI | MR | Zbl

[4] A. V. Vasil'ev, “On Thompson's conjecture”, SEMR, 6 (2009), 457–464 | MR | Zbl

[5] N. Ahanjideh, “On Thompson's conjecture for some finite simple groups”, J. Algebra, 344 (2011), 205–228 | DOI | MR | Zbl

[6] M. Xu, W. Shi, “Thompson's conjecture for Lie type groups $E_7(q)$”, Sci. China Math., 57:3 (2014), 499–514 | DOI | MR | Zbl

[7] A. Babai, A. Mahmoudifar, “Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$”, Czechoslovak Math. J., 67(142):4 (2017), 1049–1058 | DOI | MR | Zbl

[8] I. Gorshkov, “On Thompson's conjecture for alternating groups of large degree”, J. Group Theory, 20:4 (2017), 719–728 | DOI | MR | Zbl

[9] S. Liu, Y. Huang, “On Thompson's conjecture for alternating group $A_{26}$”, Ital. J. Pure Appl. Math., 32 (2014), 525–532 | MR | Zbl

[10] M. Xu, “Thompson's conjecture for alternating group of degree 22”, Front. Math. China, 8:5 (2013), 1227–1236 | DOI | MR | Zbl

[11] D. Gorenstein, Finite groups, New York–London, 1968, 527 pp. | MR | Zbl

[12] J. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[13] A. S. Kondratiev, “On prime graph components for finite simple groups”, Mat. Sb., 180:6 (1989), 787–797 | MR

[14] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl

[15] A. V. Vasilev, E. P. Vdovin, “An Adjacency Criterion for the Prime Graph of a Finite Simple Group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl