On Thompson's conjecture for finite simple exceptional groups of Lie type
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 100-107

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $N(G)$ be its set of conjugacy class sizes. In the present paper it is proved $G\simeq L$ if $N(G)=N(L)$, where $G$ is a finite group with trivial center and $L$ is a finite simple group of exceptional Lie type.
@article{ZNSL_2019_478_a4,
     author = {I. B. Gorshkov and I. B. Kaygorodov and A. V. Kukharev and A. A. Shlepkin},
     title = {On {Thompson's} conjecture for finite simple exceptional groups of {Lie} type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--107},
     publisher = {mathdoc},
     volume = {478},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a4/}
}
TY  - JOUR
AU  - I. B. Gorshkov
AU  - I. B. Kaygorodov
AU  - A. V. Kukharev
AU  - A. A. Shlepkin
TI  - On Thompson's conjecture for finite simple exceptional groups of Lie type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 100
EP  - 107
VL  - 478
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a4/
LA  - en
ID  - ZNSL_2019_478_a4
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%A I. B. Kaygorodov
%A A. V. Kukharev
%A A. A. Shlepkin
%T On Thompson's conjecture for finite simple exceptional groups of Lie type
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 100-107
%V 478
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a4/
%G en
%F ZNSL_2019_478_a4
I. B. Gorshkov; I. B. Kaygorodov; A. V. Kukharev; A. A. Shlepkin. On Thompson's conjecture for finite simple exceptional groups of Lie type. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 100-107. http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a4/