On the image of a word map with constants of a simple algebraic group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 78-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we consider some properties of a word map with constants $\tilde{w}: G^n \rightarrow G$ of a simple algebraic groups $G$ and some properties of maps $\pi \circ \tilde{w}$, where $\pi:G\rightarrow T/W$ is the factor morphism for a fixed maximal torus $T$ of the group $G$ and the Weil group $W$ of $G$. In particular, we prove here that for an adjoint group $G$ of the types $A_r, D_r, E_r$ the map $\pi\circ \tilde{w}$ is a constant map only for words of the type $v g v^{-1}$ where $g \in G$ and $v$ is a word with constants. The corollary of this result is the following generalization of the result of T. Bandman and Yu. G. Zarhin ( Eur. J. Math. 2 (2016), 614–643): the image of a word map with constant $\tilde{w}: \mathrm{PGL}_2^n \rightarrow \mathrm{PGL}_2$ contains a representation of every semisimple conjugacy class $\ne 1$ or $w = vgv^{-1}$ for some $g, v$.
@article{ZNSL_2019_478_a3,
     author = {F. A. Gnutov and N. L. Gordeev},
     title = {On the image of a word map with constants of a simple algebraic group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--99},
     year = {2019},
     volume = {478},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a3/}
}
TY  - JOUR
AU  - F. A. Gnutov
AU  - N. L. Gordeev
TI  - On the image of a word map with constants of a simple algebraic group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 78
EP  - 99
VL  - 478
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a3/
LA  - ru
ID  - ZNSL_2019_478_a3
ER  - 
%0 Journal Article
%A F. A. Gnutov
%A N. L. Gordeev
%T On the image of a word map with constants of a simple algebraic group
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 78-99
%V 478
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a3/
%G ru
%F ZNSL_2019_478_a3
F. A. Gnutov; N. L. Gordeev. On the image of a word map with constants of a simple algebraic group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 78-99. http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a3/

[1] T. Bandman, Yu. G. Zarhin, “Surjectivity of certain word maps on $PSL(2, \mathbb C)$ and $SL(2, \mathbb C)$”, Eur. J. Math., 2 (2016), 614–643 | DOI | MR | Zbl

[2] A. Borel, “On free subgroups of semisimple groups”, Enseign. Math., 29 (1983), 151–164 | MR | Zbl

[3] A. Borel, Linear Algebraic groups, Graduate texts in mathematics, 126, 2nd enl. ed., Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[4] N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chap. IV, V, VI, 2ème édition, Masson, Paris, 1981 | MR

[5] R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, 28, John Wiley Sons, London–New York–Sydney, 1972 | MR

[6] V. Chernousov, E. W. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part: short proof”, J. Algebra, 229:1 (2000), 314–332 | DOI | MR | Zbl

[7] N. L. Gordeev, “Freedom in conjugacy classes of simple algebraic groups and identities with constants”, Algebra i Analiz, 9:4 (1997), 63–78 | MR | Zbl

[8] N. L. Gordeev, B. E. Kunyavskii, E. B. Plotkin, “Verbalnye otobrazheniya i verbalnye otobrazheniya s konstantami prostykh algebraicheskikh grupp”, Dokl. Akad. Nauk, 471:2 (2016), 136–138 | DOI | Zbl

[9] N. Gordeev, B. Kunyavskii, E. Plotkin, “Word maps, word maps with constants and representation varieties of one-relator groups”, J. Algebra, 500 (2018), 390–424 | DOI | MR | Zbl

[10] N. Gordeev, B. Kunyavskii, E. Plotkin, “Word maps on perfect algebraic groups”, Intern. J. Algebra Comput., 28:8 (2018), 1487–1515 | DOI | MR | Zbl

[11] N. L. Gordeev, B. E. Kunyavskii, E. B. Plotkin, “Geometriya verbalnykh otobrazhenii v prostykh algebraicheskikh gruppakh nad spetsialnymi polyami”, Uspekhi mat. nauk, 73:5(443) (2018), 3–52 | DOI | MR | Zbl

[12] A.A. Klyacko, M.A. Ryabtseva, The dimension of solution sets to systems of equations in algebraic groups, 2019, arXiv: 1903.05236v1 [math.GR]

[13] V. V. Nesterov, A. V. Stepanov, “Tozhdestva s konstantami grupp v gruppe Shevalle tipa $F_4$”, Algebra i Analiz, 21:5 (2009), 196–202

[14] A. G. Kurosh, Teoriya grupp, Izdanie trete, dopolnennoe, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1967

[15] T. A. Springer, R. Steinberg, “Conjugacy classes”, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes Math., 131, Springer-Verlag, Berlin–Heidelberg–New York, 1970, 167–266 | DOI | MR

[16] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975