Hochschild cohomology of algebras of semidihedral type, IX: exceptional local algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 17-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Hochschild cohomology groups are calculated for a family of local algebras of semidihedral type. This family appears in the famous K. Erdmann's classification only in the case where the characteristic of the base field is equal to 2.
@article{ZNSL_2019_478_a1,
     author = {A. I. Generalov and D. A. Nikulin},
     title = {Hochschild cohomology of algebras of semidihedral type, {IX:} exceptional local algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--31},
     year = {2019},
     volume = {478},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a1/}
}
TY  - JOUR
AU  - A. I. Generalov
AU  - D. A. Nikulin
TI  - Hochschild cohomology of algebras of semidihedral type, IX: exceptional local algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 17
EP  - 31
VL  - 478
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a1/
LA  - ru
ID  - ZNSL_2019_478_a1
ER  - 
%0 Journal Article
%A A. I. Generalov
%A D. A. Nikulin
%T Hochschild cohomology of algebras of semidihedral type, IX: exceptional local algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 17-31
%V 478
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a1/
%G ru
%F ZNSL_2019_478_a1
A. I. Generalov; D. A. Nikulin. Hochschild cohomology of algebras of semidihedral type, IX: exceptional local algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 17-31. http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a1/

[1] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, I. Gruppovye algebry poludiedralnykh grupp”, Algebra i analiz, 21:2 (2009), 1–51

[2] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, II. Lokalnye algebry”, Zap. nauchn. semin. POMI, 386, 2011, 144–202

[3] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, III. Seriya $SD(2\mathcal B)_2$ v kharakteristike $2$”, Zap. nauchn. semin. POMI, 400, 2012, 133–157

[4] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, IV. Algebra kogomologii dlya serii $SD(2\mathcal B)_2(k,t,c)$ pri $c=0$”, Zap. nauchn. semin. POMI, 413, 2013, 45–92

[5] A. I. Generalov, I. M. Zilberbord, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, V. Seriya $SD(3\mathcal K)$”, Zap. nauchn. semin. POMI, 435, 2015, 5–32

[6] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, VI. Seriya $SD(2\mathcal B)_2$ v kharakteristike, otlichnoi ot $2$”, Zap. nauchn. semin. POMI, 443, 2016, 61–77

[7] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, VII. Algebry s malym parametrom”, Zap. nauchn. semin. POMI, 452, 2016, 52–69

[8] A. I. Generalov, A. A. Zaikovskii, “O proizvodnoi ekvivalentnosti algebr poludiedralnogo tipa s dvumya prostymi modulyami”, Zap. nauchn. semin. POMI, 452, 2016, 70–85

[9] A. I. Generalov, A. A. Zaikovskii, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, VIII. Seriya $SD(2\mathcal B)_1$”, Zap. nauchn. semin. POMI, 460, 2017, 35–52

[10] K. Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Math., 1428, Berlin–Heidelberg, 1990 | DOI | MR | Zbl

[11] A. I. Generalov, “Kogomologii algebr poludiedralnogo tipa, VII. Lokalnye algebry”, Zap. nauchn. semin. POMI, 365, 2009, 130–142 | Zbl

[12] Yu. V. Volkov, A. I. Generalov, S. O. Ivanov, “O postroenii bimodulnykh rezolvent s pomoschyu lemmy Khappelya”, Zap. nauchn. semin. POMI, 375, 2010, 61–70 | Zbl