On schurian fusions of the association scheme of a Galois affine plane of prime order
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The schurian fusions of the association scheme of a Galois affine plane of prime order are completely identified.
@article{ZNSL_2019_478_a0,
     author = {B. Asadian and I. Ponomarenko},
     title = {On schurian fusions of the association scheme of a {Galois} affine plane of prime order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     year = {2019},
     volume = {478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a0/}
}
TY  - JOUR
AU  - B. Asadian
AU  - I. Ponomarenko
TI  - On schurian fusions of the association scheme of a Galois affine plane of prime order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 5
EP  - 16
VL  - 478
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a0/
LA  - en
ID  - ZNSL_2019_478_a0
ER  - 
%0 Journal Article
%A B. Asadian
%A I. Ponomarenko
%T On schurian fusions of the association scheme of a Galois affine plane of prime order
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 5-16
%V 478
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a0/
%G en
%F ZNSL_2019_478_a0
B. Asadian; I. Ponomarenko. On schurian fusions of the association scheme of a Galois affine plane of prime order. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 34, Tome 478 (2019), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2019_478_a0/

[1] J. Bagherian, I. Ponomarenko, A. Rahnamai Barghi, “On cyclotomic schemes over finite near-fields”, J. Algebraic Combin., 27:2 (2008), 173–185 | DOI | MR | Zbl

[2] P. J. Cameron, G. R. Omidi, B. Tayfeh-Rezaie, “$3$-designs from $\mathrm{PGL}(2,q)$”, Electronic J. Combin., 13:1 (2006), 50 | MR

[3] G. Chen, I. Ponomarenko, Lectures on Coherent Configurations, 2019 http://www.pdmi.ras.ru/ĩnp/ccNOTES.pdf

[4] E. Dobson, D. Witte, “Transitive permutation groups of prime-squared degree”, J. Algebraic Combin., 16:1 (2002), 43–69 | DOI | MR | Zbl

[5] S. Evdokimov, I. Ponomarenko, “Characterization of cyclotomic schemes and normal Schur rings over a cyclic group”, St. Petersburg Math J., 14:2 (2002), 189–221 | MR

[6] S. Evdokimov, I. Ponomarenko, “Permutation group approach to association schemes”, Eroupean J. Combin., 30:6 (2009), 1456–1476 | DOI | MR | Zbl

[7] A. Yu. Gol'fand, A. V. Ivanov, M. Kh. Klin, “Amorphic cellular rings”, Investigations in algebraic theory of combinatorial objects, Kluwer Acad. Publ., Dordrecht, 1994, 167–186 | DOI | Zbl

[8] D. G. Higman, “Rank $5$ association schemes and triality”, Linear Algebra Appl., 226/228 (1995), 197–222 | DOI | MR | Zbl

[9] M. Muzychuk, I. Ponomarenko, “On pseudocyclic association schemes”, ARS Math. Contemp., 5 (2012), 1–25 | DOI | MR | Zbl

[10] I. Ponomarenko, A. Rahnamai Barghi, “On amorphic C-algebras”, J. Math. Sci., 145:3 (2007), 4981–4988 | DOI | MR

[11] H. Wielandt, Finite Permutation Groups, Academic Press, New York–London, 1964 | MR | Zbl

[12] H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions, The Ohio State University, 1969