Voir la notice du chapitre de livre
@article{ZNSL_2018_477_a8,
author = {M. Chernobay},
title = {On type {I} blow up for the {Navier{\textendash}Stokes} equations near the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--149},
year = {2018},
volume = {477},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a8/}
}
M. Chernobay. On type I blow up for the Navier–Stokes equations near the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 136-149. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a8/
[1] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer, 1976 | MR | Zbl
[2] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[3] L. Escauriaza, G. Seregin, V. Sverak, “$L_{3,\infty}$-solutions of Navier–Stokes equations and backward uniqueness”, Russian Math. Surveys, 58:2 (2003), 211–250 | DOI | MR | Zbl
[4] L. Grafakos, Classical Fourier analysis, Springer, New York, 2009 | MR
[5] K. Kang, “Regularity of axially symmetric flows in a half-space in three dimensions”, SIAM Journal of Math. Analysis, 35:6 (2004), 1636–1643 | DOI | MR | Zbl
[6] G. Koch, N. Nadirashvili, G. Seregin, V. Sverak, “Liouville theorems for the Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105 | DOI | MR | Zbl
[7] O. A. Ladyzhenskaya, “On the unique solvability in large of a three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry”, Zap. Nauchn. Semin. LOMI, 7, 1968, 155–177 (in Russian) | MR | Zbl
[8] Z. Lei, Q. Zhang, “A Liouville theorem for the axi-symmetric Navier–Stokes equations”, J. Funct. Anal., 261:8 (2011), 2323–2345 | DOI | MR | Zbl
[9] S. Leonardi, J. Malek, J. Necas, M. Pokorny, “On axially symmetric flows in $\mathbb R^3$”, J. Anal. and its Applicat., 18:3 (1999), 639–649 | MR | Zbl
[10] A. Mikhaylov, “Local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary”, Zap. Nauchn. Semin. LOMI, 370, 2009, 73–93 | MR
[11] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl
[12] G. A. Seregin, “On smoothness of $L_{3,\infty}$-solutions to the Navier–Stokes equations up to boundary”, Mathematische Annalen, 332 (2005), 219–238 | DOI | MR | Zbl
[13] G. Seregin, W. Zajaczkowski, “A sufficient condition of local regularity for the Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 336, 2006, 46–54 | MR | Zbl
[14] G. A. Seregin, “Local regularity for suitable weak solutions of the Navier–Stokes equations”, Russian Mathematical Surveys, 62:3 (2007), 595–614 | DOI | MR | Zbl
[15] G. Seregin, V. Sverak, “On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations”, Comm. Partial Differential Equations, 34:1–3 (2009), 171–201 | DOI | MR | Zbl
[16] G. A. Seregin, “Note on bounded scale-invariant quantities for the Navier–Stokes equations”, Zap. Nauchn. Semin. LOMI, 397, 2011, 150–156 | MR
[17] G. Seregin, V. Sverak, “Rescalings at possible singularities of Navier–Stokes equations in half-space”, Algebra and Analysis, 25:5 (2013), 146–172 | MR
[18] G. A. Seregin, T. N. Shilkin, “The local regularity theory for the Navier–Stokes equations near the boundary”, Proc. the St. Petersburg Math. Soc., 15 (2014), 219–244 | MR
[19] G. A. Seregin, Lecture notes on regularity theory for the Navier–Stokes equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015 | MR | Zbl
[20] G. Seregin, T. Shilkin, “Liouville-type theorems for the Navier–Stokes equations”, Russian Mathematical Surveys, 73:4(442) (2018), 103–170 (in Russian) | DOI | MR
[21] G. Seregin, V. Sverak, “Regularity criteria for Navier–Stokes solutions”, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, eds. Y. Giga, A. Novotny, 2018
[22] G. Seregin, D. Zhou, Regularity of solutions to the Navier–Stokes equations in $\dot B^{-1}_{\infty, \infty}$, 2018, arXiv: 1802.03600 | MR
[23] V. A. Solonnikov, “On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator”, Russian Math. Surveys, 58:2 (2003), 331–365 | DOI | MR | Zbl