On spectral asymptotics of the Sturm--Liouville problem with self-conformal singular weight with strong bounded distortion property
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 129-135
Voir la notice de l'article provenant de la source Math-Net.Ru
Spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with a singular self-conformal weight measure is considered under the assumption of a stronger version of the bounded distortion property for the conformal iterated function system corresponding to the weight measure. The power exponent of the main term of the eigenvalue counting function asymptotics is obtained. This generalizes the result obtained by T. Fujita (Taniguchi Symp. PMMP Katata, 1985) in the case of self-similar (self-affine) measure.
@article{ZNSL_2018_477_a7,
author = {U. R. Freiberg and N. V. Rastegaev},
title = {On spectral asymptotics of the {Sturm--Liouville} problem with self-conformal singular weight with strong bounded distortion property},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {129--135},
publisher = {mathdoc},
volume = {477},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/}
}
TY - JOUR AU - U. R. Freiberg AU - N. V. Rastegaev TI - On spectral asymptotics of the Sturm--Liouville problem with self-conformal singular weight with strong bounded distortion property JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 129 EP - 135 VL - 477 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/ LA - en ID - ZNSL_2018_477_a7 ER -
%0 Journal Article %A U. R. Freiberg %A N. V. Rastegaev %T On spectral asymptotics of the Sturm--Liouville problem with self-conformal singular weight with strong bounded distortion property %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 129-135 %V 477 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/ %G en %F ZNSL_2018_477_a7
U. R. Freiberg; N. V. Rastegaev. On spectral asymptotics of the Sturm--Liouville problem with self-conformal singular weight with strong bounded distortion property. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 129-135. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/