@article{ZNSL_2018_477_a7,
author = {U. R. Freiberg and N. V. Rastegaev},
title = {On spectral asymptotics of the {Sturm{\textendash}Liouville} problem with self-conformal singular weight with strong bounded distortion property},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {129--135},
year = {2018},
volume = {477},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/}
}
TY - JOUR AU - U. R. Freiberg AU - N. V. Rastegaev TI - On spectral asymptotics of the Sturm–Liouville problem with self-conformal singular weight with strong bounded distortion property JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 129 EP - 135 VL - 477 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/ LA - en ID - ZNSL_2018_477_a7 ER -
%0 Journal Article %A U. R. Freiberg %A N. V. Rastegaev %T On spectral asymptotics of the Sturm–Liouville problem with self-conformal singular weight with strong bounded distortion property %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 129-135 %V 477 %U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/ %G en %F ZNSL_2018_477_a7
U. R. Freiberg; N. V. Rastegaev. On spectral asymptotics of the Sturm–Liouville problem with self-conformal singular weight with strong bounded distortion property. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 129-135. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/
[1] M. G. Krein, “Determination of the density of the symmetric inhomogeneous string by spectrum”, Dokl. Akad. Nauk SSSR, 76:3 (1951), 345–348 (in Russian) | MR
[2] T. Fujita, “A fractional dimention, self-similarity and a generalized diffusion operator”, Taniguchi Symp. PMMP (Katata, 1985), 83–90 | MR | Zbl
[3] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl
[4] J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals”, Comm. Math. Phys.,, 158 (1991), 93–125 | DOI | MR
[5] A. I. Nazarov, “Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some Gaussian processes”, J. Math. Sci. (New York), 133:3 (2006), 1314–1327 | DOI | MR
[6] U. R. Freiberg, “A Survey on measure geometric Laplacians on Cantor like sets”, Arabian J. Sci. Engineering, 28:1C (2003), 189–198 | MR | Zbl
[7] A. A. Vladimirov, I. A. Sheipak, “On the Neumann problem for the Sturm–Liouville equation with Cantor-type self-similar weight”, Funct. Anal. Appl., 47:4 (2013), 261–270 | DOI | MR | Zbl
[8] N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight”, J. Math. Sci. (N. Y.), 210:6 (2015), 814–821 | DOI | MR | Zbl
[9] N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with arithmetically self-similar weight of a generalized Cantor type”, Funct. Anal. Appl., 52:1 (2018), 70–73 | DOI | MR | Zbl
[10] I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces $L_p[0,1]$”, Math. Notes, 81:6 (2007), 827–839 | DOI | MR | Zbl
[11] J. E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[12] N. Patzschke, “Self-conformal multifractal measures”, Advances Appl. Math., 19 (1997), 486–513 | DOI | MR | Zbl