On spectral asymptotics of the Sturm–Liouville problem with self-conformal singular weight with strong bounded distortion property
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 129-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with a singular self-conformal weight measure is considered under the assumption of a stronger version of the bounded distortion property for the conformal iterated function system corresponding to the weight measure. The power exponent of the main term of the eigenvalue counting function asymptotics is obtained. This generalizes the result obtained by T. Fujita (Taniguchi Symp. PMMP Katata, 1985) in the case of self-similar (self-affine) measure.
@article{ZNSL_2018_477_a7,
     author = {U. R. Freiberg and N. V. Rastegaev},
     title = {On spectral asymptotics of the {Sturm{\textendash}Liouville} problem with self-conformal singular weight with strong bounded distortion property},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--135},
     year = {2018},
     volume = {477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/}
}
TY  - JOUR
AU  - U. R. Freiberg
AU  - N. V. Rastegaev
TI  - On spectral asymptotics of the Sturm–Liouville problem with self-conformal singular weight with strong bounded distortion property
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 129
EP  - 135
VL  - 477
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/
LA  - en
ID  - ZNSL_2018_477_a7
ER  - 
%0 Journal Article
%A U. R. Freiberg
%A N. V. Rastegaev
%T On spectral asymptotics of the Sturm–Liouville problem with self-conformal singular weight with strong bounded distortion property
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 129-135
%V 477
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/
%G en
%F ZNSL_2018_477_a7
U. R. Freiberg; N. V. Rastegaev. On spectral asymptotics of the Sturm–Liouville problem with self-conformal singular weight with strong bounded distortion property. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 129-135. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a7/

[1] M. G. Krein, “Determination of the density of the symmetric inhomogeneous string by spectrum”, Dokl. Akad. Nauk SSSR, 76:3 (1951), 345–348 (in Russian) | MR

[2] T. Fujita, “A fractional dimention, self-similarity and a generalized diffusion operator”, Taniguchi Symp. PMMP (Katata, 1985), 83–90 | MR | Zbl

[3] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[4] J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals”, Comm. Math. Phys.,, 158 (1991), 93–125 | DOI | MR

[5] A. I. Nazarov, “Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some Gaussian processes”, J. Math. Sci. (New York), 133:3 (2006), 1314–1327 | DOI | MR

[6] U. R. Freiberg, “A Survey on measure geometric Laplacians on Cantor like sets”, Arabian J. Sci. Engineering, 28:1C (2003), 189–198 | MR | Zbl

[7] A. A. Vladimirov, I. A. Sheipak, “On the Neumann problem for the Sturm–Liouville equation with Cantor-type self-similar weight”, Funct. Anal. Appl., 47:4 (2013), 261–270 | DOI | MR | Zbl

[8] N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight”, J. Math. Sci. (N. Y.), 210:6 (2015), 814–821 | DOI | MR | Zbl

[9] N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with arithmetically self-similar weight of a generalized Cantor type”, Funct. Anal. Appl., 52:1 (2018), 70–73 | DOI | MR | Zbl

[10] I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces $L_p[0,1]$”, Math. Notes, 81:6 (2007), 827–839 | DOI | MR | Zbl

[11] J. E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[12] N. Patzschke, “Self-conformal multifractal measures”, Advances Appl. Math., 19 (1997), 486–513 | DOI | MR | Zbl