Voir la notice du chapitre de livre
@article{ZNSL_2018_477_a6,
author = {G. Seregin and D. Zhou},
title = {Regularity of solutions to the {Navier{\textendash}Stokes} equations in $\dot{B}_{\infty,\infty}^{-1}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--128},
year = {2018},
volume = {477},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a6/}
}
G. Seregin; D. Zhou. Regularity of solutions to the Navier–Stokes equations in $\dot{B}_{\infty,\infty}^{-1}$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 119-128. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a6/
[1] A. Cheskidov, R. Shvydkoy, “On the regularity of weak solutions of the $3D$ Navier–Stokes equations in $B^{-1}_{\infty,\infty}$”, Arch. Ration. Mech. Anal., 195 (2010), 159–169 | DOI | MR | Zbl
[2] L. Burke, Q. Zhang, “A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations”, Adv. Differential Equations, 15:5–6 (2010), 531–560 | MR | Zbl
[3] D. Chae, J. Lee, “On the regularity of the axisymmetric solutions of the Navier-Stokes equations”, Math. Z., 239:4 (2002), 645–671 | DOI | MR | Zbl
[4] C.-C. Chen, R. M. Strain, H.-T. Yau, T.-P. Tsai, “Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations”, Int. Math. Res. Not., 2008 (2008), 1–31 | MR
[5] C.-C. Chen, R. M. Strain, H.-T. Yau, T.-P. Tsai, “Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations II”, Comm. Partial Differential Equations, 34:2009, 203–232 | MR | Zbl
[6] H. Hajaiej, L. Molinet, T. Ozawa, B. Wang, “Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized boson equations”, Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, 26, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, 159–175 | MR
[7] T. Hmidi, D. Li, “Small $\dot{B}^{-1}_{\infty,\infty}$ implies regularity”, Dyn. Partial Differ. Equ., 14:1 (2017), 1–4 | DOI | MR | Zbl
[8] T. Y. Hou, L. Zhen, C. Li, “Global regularity of the $3D$ axi-symmetric Navier–Stokes equations with anisotropic data”, Comm. Partial Differential Equations, 33:7–9 (2008), 1622–1637 | DOI | MR | Zbl
[9] T. Y. Hou, C. Li, “Dynamic stability of the three-dimensional axisymmetric Navier–Stokes equations with swirl”, Comm. Pure Appl. Math., 61 (2008), 661–697 | DOI | MR | Zbl
[10] Q. Jiu, Z. Xin, “Some Regularity Criteria on Suitable Weak Solutions of the 3-D Incompressible Axisymmetric Navier-Stokes Equations”, New Studies in Advanced Mathematics, 2, International Press, Somerville, MA, 2003, 119–139 | MR | Zbl
[11] G. Koch, N. Nadirashvili, G. Seregin, V. Sverak, “Liouville theorems for the Navier-Stokes equations and applications”, Acta Math., 203 (2009), 83–105 | DOI | MR | Zbl
[12] O. A. Ladyzhenskaya, “On the unique global solvability to the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry”, Zap. Nauchn. Semin. LOMI, 7, 1968, 155–177 | MR | Zbl
[13] M. Ledoux, “On improved Sobolev embedding theorems”, Math. Research Letters, 10 (2003), 659–669 | DOI | MR | Zbl
[14] Z. Lei, Q. Zhang, “A Liouville theorem for the axially-symmetric Navier–Stokes equations”, J. Funct. Anal., 261:8 (2011), 2323–2345 | DOI | MR | Zbl
[15] Z. Lei, Q. Zhang, “Structure of solutions of 3D axisymmetric Navier-Stokes equations near maximal points”, Pacific J. Math., 254:2 (2011), 335–344 | DOI | MR | Zbl
[16] Z. Lei, E. Navas, Q. Zhang, “A priori bound on the velocity in axially symmetric Navier–Stokes equations”, Comm. Math. Phys., 341:1 (2016), 289–307 | DOI | MR | Zbl
[17] Z. Lei, Q. Zhang, “Criticality of the axially symmetric Navier–Stokes equations”, Pacific J. Math., 289:1 (2017), 169–187 | DOI | MR | Zbl
[18] X. Pan, “Regularity of solutions to axisymmetric Navier–Stokes equations with a slightly supercritical condition”, J. Differential Equations, 260:12 (2016), 8485–8529 | DOI | MR | Zbl
[19] G. Seregin, V. Sverak, “On type I singularities of the local axi-symmetric solutions ofthe Navier–Stokes equations”, Comm. Partial Differential Equations, 34 (2009), 171–201 | DOI | MR | Zbl
[20] G. Seregin, W. Zajaczkowski, “A sufficient condition of regularity for axially symmetric solutions to the Navier–Stokes equations”, SIAM J. Math. Anal., 39:2 (2007), 669–685 | DOI | MR | Zbl
[21] G. Seregin, “A note on bounded scale-invariant quantities for the Navier–Stokes equations”, J. Math. Sci. (N.Y.), 185:5 (2012), 742–745 | DOI | MR | Zbl
[22] M. R. Ukhovskii, V. I. Yudovich, “Axially symmetric flows of ideal and viscous fluids filling the whole space”, J. Appl. Math. Mech., 32 (1968), 52–61 | DOI | MR
[23] W. Wang, Z. Zhang, “Regularity of weak solutions for the Navier-Stokes equations in the class $L^\infty(\mathrm{BMO}^{-1})$”, Commun. Contemp. Math., 14:3 (2012), 1250020, 24 pp. | DOI | MR | Zbl
[24] D. Wei, “Regularity criterion to the axially symmetric Navier–Stokes equations”, J. Math. Anal. Appl., 435:1 (2016), 402–413 | DOI | MR