A generalization of the Hardy inequality
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 112-118
Cet article a éte moissonné depuis la source Math-Net.Ru
A generalization of the Hardy inequality for vector functions is obtained.
@article{ZNSL_2018_477_a5,
author = {A. I. Nazarov and N. S. Ustinov},
title = {A generalization of the {Hardy} inequality},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {112--118},
year = {2018},
volume = {477},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a5/}
}
A. I. Nazarov; N. S. Ustinov. A generalization of the Hardy inequality. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 112-118. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a5/
[1] O. Costin, V. Maz'ya, “Sharp Hardy–Leray inequality for axisymmetric divergence-free fields”, Calc. Var. and PDEs, 32:4 (2008), 523–532 | DOI | MR | Zbl
[2] V. A. Ditkin, A. P. Prudnikov, Integralnye preobrazovaniya i operatsionnoe ischislenie, Fizmatgiz, M., 1961
[3] A. V. Dmitruk, “Kriterii neotritsatelnosti vyrozhdennoi kvadratichnoi formy s dvumernym upravleniem”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 110, 2006, 49–75
[4] N. Hamamoto, F. Takahashi, Sharp Hardy–Leray and Rellich–Leray inequalities for curl-free vector fields, 2018, arXiv: 1808.09614
[5] E. Ch. Titchmarsh, Vvedenie v teoriyu integralov Fure, OGIZ-GITTL, M., 1948