Some remarks on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 87-111
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of the paper is to investigate on some questions of local regularity of a suitable weak solution to the Navier–Stokes Cauchy problem. The results are obtained in the wake of the ones, well known, by Caffarelli–Kohn–Nirenberg.
@article{ZNSL_2018_477_a4,
     author = {F. Crispo and P. Maremonti},
     title = {Some remarks on the partial regularity of a suitable weak solution to the {Navier{\textendash}Stokes} {Cauchy} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--111},
     year = {2018},
     volume = {477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a4/}
}
TY  - JOUR
AU  - F. Crispo
AU  - P. Maremonti
TI  - Some remarks on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 87
EP  - 111
VL  - 477
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a4/
LA  - en
ID  - ZNSL_2018_477_a4
ER  - 
%0 Journal Article
%A F. Crispo
%A P. Maremonti
%T Some remarks on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 87-111
%V 477
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a4/
%G en
%F ZNSL_2018_477_a4
F. Crispo; P. Maremonti. Some remarks on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 87-111. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a4/

[1] L. Caffarelli, R. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] F. Crispo, P. Maremonti, “On the spatial asymptotic decay of a suitable weak solution to the Navier–Stokes Cauchy problem”, Nonlinearity, 29 (2016), 1355–1383 | DOI | MR

[3] F. Crispo, P. Maremonti, “A remark on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem”, Discrete Contin. Dyn. Syst., 37 (2017), 1283–1294 | DOI | MR | Zbl

[4] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[5] P. Maremonti, “Regular solutions to the Navier–Stokes equations with an initial data in $L(n,\infty)$”, Ric. Mat., 66 (2017), 65–97 | DOI | MR | Zbl

[6] P. Maremonti, “A Note on Prodi-Serrin Conditions for the Regularity of a Weak Solution to the Navier–Stokes Equations”, J. Math. Fluid Mech., 20 (2018), 379–392 | DOI | MR | Zbl

[7] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl

[8] V. Scheffer, “Asolution to the Navier–Stokes inequality with an internal singularity”, Comm. Math. Phys., 101 (1985), 47–85 | DOI | MR | Zbl

[9] E. A. Stein, “Note on singular integrals”, Proc. Amer. Math. Soc., 8 (1957), 250–254 | DOI | MR | Zbl

[10] J. Serrin, “The initial value problem for the Navier–Stokes equations”, Nonlinear Problems, ed. R. F. Langer, Univ. of Wisconsin Press, 1963, 69–98 | MR

[11] A. Vasseur, “A new proof of partial regularity of solutions to Navier–Stokes equations”, Nonlin. Diff. Eq. Appl., 14 (2007), 753–785 | DOI | MR | Zbl