Voir la notice du chapitre de livre
@article{ZNSL_2018_477_a4,
author = {F. Crispo and P. Maremonti},
title = {Some remarks on the partial regularity of a suitable weak solution to the {Navier{\textendash}Stokes} {Cauchy} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {87--111},
year = {2018},
volume = {477},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a4/}
}
TY - JOUR AU - F. Crispo AU - P. Maremonti TI - Some remarks on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 87 EP - 111 VL - 477 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a4/ LA - en ID - ZNSL_2018_477_a4 ER -
F. Crispo; P. Maremonti. Some remarks on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 87-111. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a4/
[1] L. Caffarelli, R. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[2] F. Crispo, P. Maremonti, “On the spatial asymptotic decay of a suitable weak solution to the Navier–Stokes Cauchy problem”, Nonlinearity, 29 (2016), 1355–1383 | DOI | MR
[3] F. Crispo, P. Maremonti, “A remark on the partial regularity of a suitable weak solution to the Navier–Stokes Cauchy problem”, Discrete Contin. Dyn. Syst., 37 (2017), 1283–1294 | DOI | MR | Zbl
[4] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl
[5] P. Maremonti, “Regular solutions to the Navier–Stokes equations with an initial data in $L(n,\infty)$”, Ric. Mat., 66 (2017), 65–97 | DOI | MR | Zbl
[6] P. Maremonti, “A Note on Prodi-Serrin Conditions for the Regularity of a Weak Solution to the Navier–Stokes Equations”, J. Math. Fluid Mech., 20 (2018), 379–392 | DOI | MR | Zbl
[7] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl
[8] V. Scheffer, “Asolution to the Navier–Stokes inequality with an internal singularity”, Comm. Math. Phys., 101 (1985), 47–85 | DOI | MR | Zbl
[9] E. A. Stein, “Note on singular integrals”, Proc. Amer. Math. Soc., 8 (1957), 250–254 | DOI | MR | Zbl
[10] J. Serrin, “The initial value problem for the Navier–Stokes equations”, Nonlinear Problems, ed. R. F. Langer, Univ. of Wisconsin Press, 1963, 69–98 | MR
[11] A. Vasseur, “A new proof of partial regularity of solutions to Navier–Stokes equations”, Nonlin. Diff. Eq. Appl., 14 (2007), 753–785 | DOI | MR | Zbl