@article{ZNSL_2018_477_a3,
author = {V. G. Zvyagin and A. V. Zvyagin and M. V. Turbin},
title = {Optimal feedback control problem for the {Bingam} model with periodical boundary conditions on spatial variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--86},
year = {2018},
volume = {477},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a3/}
}
TY - JOUR AU - V. G. Zvyagin AU - A. V. Zvyagin AU - M. V. Turbin TI - Optimal feedback control problem for the Bingam model with periodical boundary conditions on spatial variables JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 54 EP - 86 VL - 477 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a3/ LA - ru ID - ZNSL_2018_477_a3 ER -
%0 Journal Article %A V. G. Zvyagin %A A. V. Zvyagin %A M. V. Turbin %T Optimal feedback control problem for the Bingam model with periodical boundary conditions on spatial variables %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 54-86 %V 477 %U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a3/ %G ru %F ZNSL_2018_477_a3
V. G. Zvyagin; A. V. Zvyagin; M. V. Turbin. Optimal feedback control problem for the Bingam model with periodical boundary conditions on spatial variables. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 54-86. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a3/
[1] V. V. Shelukhin, “Bingham Viscoplastic as a Limit of Non-Newtonian Fluids”, J. Math. Fluid Mechanic, 4:2 (2002), 109–127 | DOI | MR | Zbl
[2] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980
[3] J. U. Kim, “On the Initial-Boundary Value Problem for a Bingham Fluid in a Three Dimensional Domain”, Trans. Amer. Math. Soc., 304:2 (1987), 751–770 | MR | Zbl
[4] G. A. Seregin, “O dinamicheskoi sisteme, porozhdennoi dvumernymi uravneniyami dvizheniya sredy Bingama”, Zap. nauchn. sem. LOMI, 188, 1991, 128–142
[5] J. L. Lions, Optimal control of systems governed by partial differential equations, Springer, Berlin, 1971 | MR | Zbl
[6] F. Abergel, R. Temam, “On Some Control Problems in Fluid Mechanics”, Theor. Comput. Fluid Dyn., 1:6 (1990), 303–325 | DOI | Zbl
[7] M. D. Gunzburger, L. Hou, T. P. Svobodny, “Boundary velocity control of incompressible flow with an application to viscous drag reduction”, SIAM J. Control Optim., 30:1 (1992), 167–181 | DOI | MR | Zbl
[8] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Universitetskaya seriya, 5, Nauchnaya kniga, Novosibirsk, 1999
[9] H. Choi, R. Temam, P. Moin, J. Kim, “Feedback control for unsteady flow and its application to Burgers equation”, J. Fluid Mech., 253 (1993), 509–543 | DOI | MR | Zbl
[10] V. V. Obukhovskii, P. Zecca, V. G. Zvyagin, “Optimal feedback control in the problem of the motion of a viscoelastic fluid”, Topological Methods in Nonlinear Analysis, 23:2 (2004), 323–337 | DOI | MR | Zbl
[11] V. G. Zvyagin, M. V. Turbin, “Optimal Feedback Control in the Mathematical Model of Low Concentrated Agueous Polymer Solutions”, J. Optimization Theory and Applications, 148:1 (2011), 146–163 | DOI | MR | Zbl
[12] V. G. Zvyagin, M. Yu. Kuz'min, “On an optimal control problem in the Voight model of the motion of a viscoelastic fluid”, J. Math. Sci., 149:5 (2008), 1618–1627 | DOI | MR
[13] V. Zvyagin, V. Obukhovskii, A. Zvyagin, “On inclusions with multivalued operators and their applications to some optimization problems”, J. Fixed Point Theory and Applications, 16 (2014), 27–82 | DOI | MR | Zbl
[14] A. V. Zvyagin, “Zadacha optimalnogo upravleniya s obratnoi svyazyu dlya matematicheskoi modeli dvizheniya slabo kontsentrirovannykh vodnykh polimernykh rastvorov s ob'ektivnoi proizvodnoi”, Sib. matem. zhurnal, 54:4 (2013), 807—825 | MR | Zbl
[15] A. V. Zvyagin, “Optimalnoe upravlenie s obratnoi svyazyu dlya termovyazkouprugoi modeli dvizheniya zhidkosti Foigta”, Dokl. Akademii Nauk, 468:3 (2016), 251–253 | DOI | Zbl
[16] M. A. Krasnoselskii, P. P. Zabreiko, P. E. Sobolevskii, E. I. Pustylnik, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1970 | MR
[17] R. Temam, “Navier-Stokes equations and nonlinear functional analysis”, CBM-NSF Regional Conference Series in Applied Mathematics, Philadelphia, Pennsylvania, 1983 | MR
[18] V. G. Zvyagin, “Topological Approximation Approach to Study of Mathematical Problems of Hydrodynamics”, J. Math. Sci., 201:6 (2014), 830–858 | DOI | MR | Zbl
[19] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012
[20] J. L. Lions, E. Magenes, Problemès aux limites non homogènes et applications, v. 1, Dunod, Paris, 1968 | MR | Zbl
[21] R. Temam, Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987