Optimal feedback control problem for the Bingam model with periodical boundary conditions on spatial variables
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 54-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to an optimal feedback control problem for Bingham model with periodic conditions on spatial variables. It is given an interpretation of the considered feedback control problem in the form of an operator inclusion with a multi-valued right-hand side. On the base of the topological approximation approach to the study of hydrodynamics problems and the degree theory of multivalued vector fields, the solutions existence of this inclusion is proved. Then it is proved that among the solutions of the considered problem there is a solution which minimizes to a given quality functional.
@article{ZNSL_2018_477_a3,
     author = {V. G. Zvyagin and A. V. Zvyagin and M. V. Turbin},
     title = {Optimal feedback control problem for the {Bingam} model with periodical boundary conditions on spatial variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--86},
     year = {2018},
     volume = {477},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a3/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - A. V. Zvyagin
AU  - M. V. Turbin
TI  - Optimal feedback control problem for the Bingam model with periodical boundary conditions on spatial variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 54
EP  - 86
VL  - 477
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a3/
LA  - ru
ID  - ZNSL_2018_477_a3
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A A. V. Zvyagin
%A M. V. Turbin
%T Optimal feedback control problem for the Bingam model with periodical boundary conditions on spatial variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 54-86
%V 477
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a3/
%G ru
%F ZNSL_2018_477_a3
V. G. Zvyagin; A. V. Zvyagin; M. V. Turbin. Optimal feedback control problem for the Bingam model with periodical boundary conditions on spatial variables. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 54-86. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a3/

[1] V. V. Shelukhin, “Bingham Viscoplastic as a Limit of Non-Newtonian Fluids”, J. Math. Fluid Mechanic, 4:2 (2002), 109–127 | DOI | MR | Zbl

[2] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980

[3] J. U. Kim, “On the Initial-Boundary Value Problem for a Bingham Fluid in a Three Dimensional Domain”, Trans. Amer. Math. Soc., 304:2 (1987), 751–770 | MR | Zbl

[4] G. A. Seregin, “O dinamicheskoi sisteme, porozhdennoi dvumernymi uravneniyami dvizheniya sredy Bingama”, Zap. nauchn. sem. LOMI, 188, 1991, 128–142

[5] J. L. Lions, Optimal control of systems governed by partial differential equations, Springer, Berlin, 1971 | MR | Zbl

[6] F. Abergel, R. Temam, “On Some Control Problems in Fluid Mechanics”, Theor. Comput. Fluid Dyn., 1:6 (1990), 303–325 | DOI | Zbl

[7] M. D. Gunzburger, L. Hou, T. P. Svobodny, “Boundary velocity control of incompressible flow with an application to viscous drag reduction”, SIAM J. Control Optim., 30:1 (1992), 167–181 | DOI | MR | Zbl

[8] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Universitetskaya seriya, 5, Nauchnaya kniga, Novosibirsk, 1999

[9] H. Choi, R. Temam, P. Moin, J. Kim, “Feedback control for unsteady flow and its application to Burgers equation”, J. Fluid Mech., 253 (1993), 509–543 | DOI | MR | Zbl

[10] V. V. Obukhovskii, P. Zecca, V. G. Zvyagin, “Optimal feedback control in the problem of the motion of a viscoelastic fluid”, Topological Methods in Nonlinear Analysis, 23:2 (2004), 323–337 | DOI | MR | Zbl

[11] V. G. Zvyagin, M. V. Turbin, “Optimal Feedback Control in the Mathematical Model of Low Concentrated Agueous Polymer Solutions”, J. Optimization Theory and Applications, 148:1 (2011), 146–163 | DOI | MR | Zbl

[12] V. G. Zvyagin, M. Yu. Kuz'min, “On an optimal control problem in the Voight model of the motion of a viscoelastic fluid”, J. Math. Sci., 149:5 (2008), 1618–1627 | DOI | MR

[13] V. Zvyagin, V. Obukhovskii, A. Zvyagin, “On inclusions with multivalued operators and their applications to some optimization problems”, J. Fixed Point Theory and Applications, 16 (2014), 27–82 | DOI | MR | Zbl

[14] A. V. Zvyagin, “Zadacha optimalnogo upravleniya s obratnoi svyazyu dlya matematicheskoi modeli dvizheniya slabo kontsentrirovannykh vodnykh polimernykh rastvorov s ob'ektivnoi proizvodnoi”, Sib. matem. zhurnal, 54:4 (2013), 807—825 | MR | Zbl

[15] A. V. Zvyagin, “Optimalnoe upravlenie s obratnoi svyazyu dlya termovyazkouprugoi modeli dvizheniya zhidkosti Foigta”, Dokl. Akademii Nauk, 468:3 (2016), 251–253 | DOI | Zbl

[16] M. A. Krasnoselskii, P. P. Zabreiko, P. E. Sobolevskii, E. I. Pustylnik, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1970 | MR

[17] R. Temam, “Navier-Stokes equations and nonlinear functional analysis”, CBM-NSF Regional Conference Series in Applied Mathematics, Philadelphia, Pennsylvania, 1983 | MR

[18] V. G. Zvyagin, “Topological Approximation Approach to Study of Mathematical Problems of Hydrodynamics”, J. Math. Sci., 201:6 (2014), 830–858 | DOI | MR | Zbl

[19] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012

[20] J. L. Lions, E. Magenes, Problemès aux limites non homogènes et applications, v. 1, Dunod, Paris, 1968 | MR | Zbl

[21] R. Temam, Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987