Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 12-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the first mixed problem for the Vlasov–Poisson system in an infinite cylinder. This problem describes the kinetics of charged particles of high-temperature plasma. We show that the characteristics of the Vlasov equations do not reach the boundary of the cylinder if the external magnetic field is sufficiently large. Sufficient conditions are obtained for existence and uniqueness of the classical solution of the Vlasov–Poisson system with ions and electrons density distribution functions supported at some distance from the boundary of the cylinder.
@article{ZNSL_2018_477_a1,
     author = {Yu. O. Belyaeva and A. L. Skubachevskii},
     title = {Unique solvability of the first mixed problem for the {Vlasov{\textendash}Poisson} system in an infinite cylinder},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {12--34},
     year = {2018},
     volume = {477},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/}
}
TY  - JOUR
AU  - Yu. O. Belyaeva
AU  - A. L. Skubachevskii
TI  - Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 12
EP  - 34
VL  - 477
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/
LA  - ru
ID  - ZNSL_2018_477_a1
ER  - 
%0 Journal Article
%A Yu. O. Belyaeva
%A A. L. Skubachevskii
%T Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 12-34
%V 477
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/
%G ru
%F ZNSL_2018_477_a1
Yu. O. Belyaeva; A. L. Skubachevskii. Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 12-34. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/

[1] A. A. Arsenev, “Suschestvovanie v tselom slabogo resheniya sistemy uravnenii Vlasova”, Zhurn. vychisl. matem. i matem. fiz., 15:1 (1975), 136–147 | MR | Zbl

[2] R. L. Dobrushin, “Uravneniya Vlasova”, Funkts. analiz i ego pril., 13:2 (1979), 48–58 | MR | Zbl

[3] V. V. Ilgisonis, Klassicheskie zadachi fiziki goryachei plazmy, Izdatelskii dom MEI, M., 2016

[4] V. V. Kozlov, “Obobschennoe kineticheskoe uravnenie Vlasova”, UMN, 63:4(382) (2008), 93–130 | DOI | MR | Zbl

[5] V. P. Maslov, “Uravneniya samosoglasovannogo polya”, Itogi nauki i tekhniki. Ser. Sovrem. probl. matem., 11, VINITI, M., 1978, 153–234

[6] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[7] A. L. Skubachevskii, “Smeshannye zadachi dlya uravnenii Vlasova–Puassona v poluprostranstve”, Teoriya funktsii i uravneniya matematicheskoi fiziki, Sbornik statei. K $90$-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Lva Dmitrievicha Kudryavtseva, Tr. MIAN, 283, MAIK, M., 2013, 204–232

[8] A. L. Skubachevskii, “Uravneniya Vlasova-Puassona dlya dvukomponentnoi plazmy v odnorodnom magnitnom pole”, UMN, 69:2 (2014), 107–148 | DOI | MR | Zbl

[9] A. L. Skubachevskii, Y. Tsuzuki, “Klassicheskie resheniya uravnenii Vlasova–Puassona s vneshnim magnitnym polem v poluprostranstve”, ZhVM i MF, 57:3 (2017), 536–552 | Zbl

[10] C. Bardos, P. Degond, “Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data”, Ann. Inst. H. Poincare Anal. Non Lineaire, 2:2 (1985), 101–118 | DOI | MR | Zbl

[11] J. Batt, “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differential Equations, 25:3 (1977), 342–364 | DOI | MR | Zbl

[12] W. Braun, K. Hepp, “The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR | Zbl

[13] R. J. DiPerna, P. L. Lions, “Global weak solutions of Vlasov-Maxwell systems”, Comm. Pure Appl. Math., 42:6 (1989), 729–757 | DOI | MR | Zbl

[14] Y. Guo, “Regularity for the Vlasov equations in a half space”, Indiana Univ. Math. J., 43:1 (1994), 255–320 | DOI | MR | Zbl

[15] E. Horst, “On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. I. General theory”, Math. Methods Appl. Sci., 3:1 (1981), 229–248 | DOI | MR | Zbl

[16] E. Horst, R. Hunze, “Weak solutions of the initial value problem for the unmodified non-linear Vlasov equation”, Math. Methods Appl. Sci., 6:1 (1984), 262–279 | DOI | MR | Zbl

[17] H. J. Hwang, J. J. L. Velázquez, “On global existence for the Vlasov–Poisson system in a half space”, J. Differential Equations, 247:6 (2009), 1915–1948 | DOI | MR | Zbl

[18] C. Mouhot, C. Villani, “On Landau damping”, Acta Math., 207:1 (2011), 29–201 | DOI | MR | Zbl

[19] K. Pfaffelmoser, “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Differential Equations, 95:2 (1992), 281–303 | DOI | MR | Zbl

[20] J. Schäffer, “Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions”, Comm. Partial Differential Equations, 16:8–9 (1991), 1313–1335 | DOI | MR

[21] A. L. Skubachevskii, “Nonlocal elliptic problems in infinite cylinder and applications”, Discr. Contin. Dynam. Systems. Ser. S, 9:3 (2016) | MR | Zbl