Unique solvability of the first mixed problem for the Vlasov--Poisson system in an infinite cylinder
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 12-34
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the first mixed problem for the Vlasov–Poisson system in an infinite cylinder. This problem describes the kinetics of charged particles of high-temperature plasma. We show that the characteristics of the Vlasov equations do not reach the boundary of the cylinder if the external magnetic field is sufficiently large. Sufficient conditions are obtained for existence and uniqueness of the classical solution of the Vlasov–Poisson system with ions and electrons density distribution functions supported at some distance from the boundary of the cylinder.
			
            
            
            
          
        
      @article{ZNSL_2018_477_a1,
     author = {Yu. O. Belyaeva and A. L. Skubachevskii},
     title = {Unique solvability of the first mixed problem for the {Vlasov--Poisson} system in an infinite cylinder},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {12--34},
     publisher = {mathdoc},
     volume = {477},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/}
}
                      
                      
                    TY - JOUR AU - Yu. O. Belyaeva AU - A. L. Skubachevskii TI - Unique solvability of the first mixed problem for the Vlasov--Poisson system in an infinite cylinder JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 12 EP - 34 VL - 477 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/ LA - ru ID - ZNSL_2018_477_a1 ER -
%0 Journal Article %A Yu. O. Belyaeva %A A. L. Skubachevskii %T Unique solvability of the first mixed problem for the Vlasov--Poisson system in an infinite cylinder %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 12-34 %V 477 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/ %G ru %F ZNSL_2018_477_a1
Yu. O. Belyaeva; A. L. Skubachevskii. Unique solvability of the first mixed problem for the Vlasov--Poisson system in an infinite cylinder. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 12-34. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/