@article{ZNSL_2018_477_a1,
author = {Yu. O. Belyaeva and A. L. Skubachevskii},
title = {Unique solvability of the first mixed problem for the {Vlasov{\textendash}Poisson} system in an infinite cylinder},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {12--34},
year = {2018},
volume = {477},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/}
}
TY - JOUR AU - Yu. O. Belyaeva AU - A. L. Skubachevskii TI - Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 12 EP - 34 VL - 477 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/ LA - ru ID - ZNSL_2018_477_a1 ER -
%0 Journal Article %A Yu. O. Belyaeva %A A. L. Skubachevskii %T Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 12-34 %V 477 %U http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/ %G ru %F ZNSL_2018_477_a1
Yu. O. Belyaeva; A. L. Skubachevskii. Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Tome 477 (2018), pp. 12-34. http://geodesic.mathdoc.fr/item/ZNSL_2018_477_a1/
[1] A. A. Arsenev, “Suschestvovanie v tselom slabogo resheniya sistemy uravnenii Vlasova”, Zhurn. vychisl. matem. i matem. fiz., 15:1 (1975), 136–147 | MR | Zbl
[2] R. L. Dobrushin, “Uravneniya Vlasova”, Funkts. analiz i ego pril., 13:2 (1979), 48–58 | MR | Zbl
[3] V. V. Ilgisonis, Klassicheskie zadachi fiziki goryachei plazmy, Izdatelskii dom MEI, M., 2016
[4] V. V. Kozlov, “Obobschennoe kineticheskoe uravnenie Vlasova”, UMN, 63:4(382) (2008), 93–130 | DOI | MR | Zbl
[5] V. P. Maslov, “Uravneniya samosoglasovannogo polya”, Itogi nauki i tekhniki. Ser. Sovrem. probl. matem., 11, VINITI, M., 1978, 153–234
[6] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[7] A. L. Skubachevskii, “Smeshannye zadachi dlya uravnenii Vlasova–Puassona v poluprostranstve”, Teoriya funktsii i uravneniya matematicheskoi fiziki, Sbornik statei. K $90$-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Lva Dmitrievicha Kudryavtseva, Tr. MIAN, 283, MAIK, M., 2013, 204–232
[8] A. L. Skubachevskii, “Uravneniya Vlasova-Puassona dlya dvukomponentnoi plazmy v odnorodnom magnitnom pole”, UMN, 69:2 (2014), 107–148 | DOI | MR | Zbl
[9] A. L. Skubachevskii, Y. Tsuzuki, “Klassicheskie resheniya uravnenii Vlasova–Puassona s vneshnim magnitnym polem v poluprostranstve”, ZhVM i MF, 57:3 (2017), 536–552 | Zbl
[10] C. Bardos, P. Degond, “Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data”, Ann. Inst. H. Poincare Anal. Non Lineaire, 2:2 (1985), 101–118 | DOI | MR | Zbl
[11] J. Batt, “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differential Equations, 25:3 (1977), 342–364 | DOI | MR | Zbl
[12] W. Braun, K. Hepp, “The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR | Zbl
[13] R. J. DiPerna, P. L. Lions, “Global weak solutions of Vlasov-Maxwell systems”, Comm. Pure Appl. Math., 42:6 (1989), 729–757 | DOI | MR | Zbl
[14] Y. Guo, “Regularity for the Vlasov equations in a half space”, Indiana Univ. Math. J., 43:1 (1994), 255–320 | DOI | MR | Zbl
[15] E. Horst, “On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. I. General theory”, Math. Methods Appl. Sci., 3:1 (1981), 229–248 | DOI | MR | Zbl
[16] E. Horst, R. Hunze, “Weak solutions of the initial value problem for the unmodified non-linear Vlasov equation”, Math. Methods Appl. Sci., 6:1 (1984), 262–279 | DOI | MR | Zbl
[17] H. J. Hwang, J. J. L. Velázquez, “On global existence for the Vlasov–Poisson system in a half space”, J. Differential Equations, 247:6 (2009), 1915–1948 | DOI | MR | Zbl
[18] C. Mouhot, C. Villani, “On Landau damping”, Acta Math., 207:1 (2011), 29–201 | DOI | MR | Zbl
[19] K. Pfaffelmoser, “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Differential Equations, 95:2 (1992), 281–303 | DOI | MR | Zbl
[20] J. Schäffer, “Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions”, Comm. Partial Differential Equations, 16:8–9 (1991), 1313–1335 | DOI | MR
[21] A. L. Skubachevskii, “Nonlocal elliptic problems in infinite cylinder and applications”, Discr. Contin. Dynam. Systems. Ser. S, 9:3 (2016) | MR | Zbl