Equipartitioning of a convex body by a system of cones and inscribed polytopes
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 125-130
Cet article a éte moissonné depuis la source Math-Net.Ru
Two new theorems are proved about equipartitionings of a convex body by a system of cones with common vertex. Limit cases of these theorems yield some previously known theorems about polytopes inscribed in a convex body.
@article{ZNSL_2018_476_a7,
author = {V. V. Makeev and N. Yu. Netsvetaev},
title = {Equipartitioning of a convex body by a system of cones and inscribed polytopes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--130},
year = {2018},
volume = {476},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a7/}
}
V. V. Makeev; N. Yu. Netsvetaev. Equipartitioning of a convex body by a system of cones and inscribed polytopes. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 125-130. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a7/
[1] R. N. Karasev, “Topologicheskie metody v kombinatornoi geometrii”, UMN, 63:6(384) (2008), 39–90 | DOI | MR | Zbl
[2] B. Gryunbaum, Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971
[3] M. L. Gromov, “O simpleksakh, vpisannykh v giperpoverkhnosti”, Matem. zametki, 5:1 (1969), 81–89 | MR | Zbl
[4] H. Kramer, “Hyperparallelograms inscribed to convex bodies”, Mathematica (Cluj), 22(45):1 (1980), 67–70 | MR | Zbl