Local smooth conjugations of the Frobenius endomorphisms
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 111-124

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, one of the generalizations of the Böttcher equation is considered. It turned out that the parametrized Poisson integral, as a function of its parameters, satisfies an equation of the type described. The structure theorem for splitting maps of the Frobenius endomorphism in a ring and in an algebra over it is proved. The real field case is considered. The generalized Böttcher equation is solved for classical two-dimensional algebras and for the Poisson algebra.
@article{ZNSL_2018_476_a6,
     author = {V. S. Kalnitsky and A. N. Petrov},
     title = {Local smooth conjugations of the {Frobenius} endomorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {476},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/}
}
TY  - JOUR
AU  - V. S. Kalnitsky
AU  - A. N. Petrov
TI  - Local smooth conjugations of the Frobenius endomorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 111
EP  - 124
VL  - 476
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/
LA  - ru
ID  - ZNSL_2018_476_a6
ER  - 
%0 Journal Article
%A V. S. Kalnitsky
%A A. N. Petrov
%T Local smooth conjugations of the Frobenius endomorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 111-124
%V 476
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/
%G ru
%F ZNSL_2018_476_a6
V. S. Kalnitsky; A. N. Petrov. Local smooth conjugations of the Frobenius endomorphisms. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 111-124. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/