Local smooth conjugations of the Frobenius endomorphisms
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 111-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, one of the generalizations of the Böttcher equation is considered. It turned out that the parametrized Poisson integral, as a function of its parameters, satisfies an equation of the type described. The structure theorem for splitting maps of the Frobenius endomorphism in a ring and in an algebra over it is proved. The real field case is considered. The generalized Böttcher equation is solved for classical two-dimensional algebras and for the Poisson algebra.
@article{ZNSL_2018_476_a6,
     author = {V. S. Kalnitsky and A. N. Petrov},
     title = {Local smooth conjugations of the {Frobenius} endomorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--124},
     year = {2018},
     volume = {476},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/}
}
TY  - JOUR
AU  - V. S. Kalnitsky
AU  - A. N. Petrov
TI  - Local smooth conjugations of the Frobenius endomorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 111
EP  - 124
VL  - 476
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/
LA  - ru
ID  - ZNSL_2018_476_a6
ER  - 
%0 Journal Article
%A V. S. Kalnitsky
%A A. N. Petrov
%T Local smooth conjugations of the Frobenius endomorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 111-124
%V 476
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/
%G ru
%F ZNSL_2018_476_a6
V. S. Kalnitsky; A. N. Petrov. Local smooth conjugations of the Frobenius endomorphisms. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 111-124. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/

[1] V. S. Kalnitskii, A. N. Petrov, “Svyaz uravneniya Betkhera s parametrizovannym integralom Puassona”, Vestnik SPbGU. Matematika. Mekhanika. Astronomiya, 5(63):4 (2018), 614–622

[2] V. I. Arnold, “Topologiya algebry: kombinatorika operatsii vozvedeniya v kvadrat”, Funkts. analiz i ego pril., 37:3 (2003), 20–35 | DOI | MR | Zbl

[3] L. E. Betkher, “Glavneishie zakony skhodimosti iteratsii i prilozhenie ikh k Analizu”, Izv. Fiz.-mat. obsch. pri Imper. Kazanskom un-te, 14:3–4 (1903), 155–234

[4] J. Ritt, “On the iteration of rational functions”, Trans. Amer. Math. Soc., 21:3 (1920), 348–356 | DOI | MR | Zbl

[5] M. I. Nechipurenko, Iteratsii veschestvennykh funktsii i funktsionalnye uravneniya, IVMiMG (VTs) CO RAN, Novosibirsk, 1997

[6] M. Kuczma, “Problems of uniqueness in the theory of functional equations in a single variable”, Zesz. nauk. Uniw. jagiell. Pr. mat., 223:14 (1970), 41–48 | Zbl