Local smooth conjugations of the Frobenius endomorphisms
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 111-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper, one of the generalizations of the Böttcher equation is considered. It turned out that the parametrized Poisson integral, as a function of its parameters, satisfies an equation of the type described. The structure theorem for splitting maps of the Frobenius endomorphism in a ring and in an algebra over it is proved. The real field case is considered. The generalized Böttcher equation is solved for classical two-dimensional algebras and for the Poisson algebra.
			
            
            
            
          
        
      @article{ZNSL_2018_476_a6,
     author = {V. S. Kalnitsky and A. N. Petrov},
     title = {Local smooth conjugations of the {Frobenius} endomorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {476},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/}
}
                      
                      
                    V. S. Kalnitsky; A. N. Petrov. Local smooth conjugations of the Frobenius endomorphisms. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 111-124. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a6/
