Voir la notice du chapitre de livre
@article{ZNSL_2018_476_a5,
author = {N. Kalinin},
title = {Legendrian curves in $\mathbb C P^3$: cubics and curves on a quadric surface},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {92--110},
year = {2018},
volume = {476},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a5/}
}
N. Kalinin. Legendrian curves in $\mathbb C P^3$: cubics and curves on a quadric surface. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 92-110. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a5/
[1] A. Alarcón, F. Forstnerič, New complex analytic methods in the theory of minimal surfaces: a survey, 2017, arXiv: 1711.08024 | MR
[2] É. S. C. Amorim, Curvas de contato no espaço projetivo, Tese, 2014 bibliotecadigital.ufmg.br/dspace/handle/1843/EABA-9GXKM6
[3] J. C. Artés, J. Llibre, N. Vulpe, “Quadratic systems with a polynomial first integral: a complete classification in the coefficient space $\mathbb R^{12}$”, J. Differential Equations, 246:9 (2009), 3535–3558 | DOI | MR | Zbl
[4] J. Bolton, L. Fernandez, “Regularity of the space of harmonic $2$-spheres in the unit $4$-sphere”, Riemann surfaces, harmonic maps and visualization, OCAMI Stud., 3, Osaka Munic. Univ. Press, Osaka, 2010, 119–128 | MR | Zbl
[5] R. L. Bryant, “Conformal and minimal immersions of compact surfaces into the $4$-sphere”, J. Differential Geom., 17:3 (1982), 455–473 | DOI | MR | Zbl
[6] J. Buczyński, “Legendrian subvarieties of projective space”, Geom. Dedicata, 118:1 (2006), 87–103 | DOI | MR | Zbl
[7] J. Buczyński, “Algebraic Legendrian varieties”, Dissertationes Math. (Rozprawy Mat.), 467 (2009), 1–86 | DOI
[8] Quo-Shin Chi, “The dimension of the moduli space of superminimal surfaces of a fixed degree and conformal structure in the $4$-sphere”, Tohoku Math. J. (2), 52:2 (2000), 299–308 | DOI | MR | Zbl
[9] Quo-Shin Chi, Xiaokang Mo, “The moduli space of branched superminimal surfaces of a fixed degree, genus and conformal structure in the four-sphere”, Osaka J. Math., 33:3 (1996), 669–696 | MR | Zbl
[10] V. Ferrer, I. Vainsencher, “Polynomial vector fields with algebraic trajectories”, Commutative algebra and its connections to geometry, Contemp. Math., 555, Amer. Math. Soc., Providence, RI, 2011, 71–85 | DOI | MR | Zbl
[11] Russian Math. (Iz. VUZ), 49:6 (2006), 72–77 | MR
[12] D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, math.uiuc.edu/Macaulay2/
[13] M. A. Guadie, Harmonic Functions on Square Lattices: Uniqueness Sets and Growth Properties, Ph.D. theses, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Mathematical Sciences, 2013 core.ac.uk/download/pdf/52106339.pdf
[14] W. Habicht, “Über die Lösbarkeit gewisser algebraischer Gleichungssysteme”, Comment. Math. Helv., 18 (1946), 154–175 | DOI | MR | Zbl
[15] P. Z. Kobak, B. Loo, “Moduli of quaternionic superminimal immersions of $2$-spheres into quaternionic projective spaces”, Ann. Global Anal. Geom., 16:6 (1998), 527–541 | DOI | MR | Zbl
[16] S. Kobayashi, “Remarks on complex contact manifolds”, Proc. Amer. Math. Soc., 10:1 (1959), 164–167 | DOI | MR | Zbl
[17] B. Loo, “The space of harmonic maps of $S^2$ into $S^4$”, Trans. Amer. Math. Soc., 313:1 (1989), 81–102 | MR | Zbl
[18] B. Loo, “Moduli space of branched superminimal immersions of a compact Riemann surface into $S^4$”, J. Austral. Math. Soc. Ser. A, 66:1 (1999), 32–50 | DOI | MR | Zbl
[19] R. C. McLean, “Deformations and moduli of superminimal surfaces in the four-sphere”, Ann. Global Anal. Geom., 15:6 (1997), 555–569 | DOI | MR | Zbl
[20] E. Musso, L. Nicolodi, “On Small-type formulae for curves in $\mathrm{PSL}(2, \mathbb{C})$”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 24:3 (2013), 311–328 | DOI | MR | Zbl
[21] R. Piene, M. Schlessinger, “On the Hilbert scheme compactification of the space of twisted cubics”, Amer. J. Math., 107:4 (1985), 761–774 | DOI | MR | Zbl
[22] B. Renschuch, “Idealtheoretische Betrachtungen zu Sätzen von Eckmann, Habicht und Chow”, Math. Ann., 166 (1966), 45–53 | DOI | MR | Zbl
[23] A. Tsygvintsev, “Algebraic invariant curves of plane polynomial differential systems”, J. Phys. A, Math. Gen., 34:3 (2001), 663–672 | DOI | MR | Zbl
[24] J.-L. Verdier, “Applications harmoniques de $S^2$ dans $S^4$”, Geometry today (Rome, 1984), Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985, 267–282 | MR
[25] J.-L. Verdier, “Applications harmoniques de $S^2$ dans $S^4$. II”, Harmonic mappings, twistors, and $\sigma$-models (Luminy, 1986), Adv. Ser. Math. Phys., 4, World Sci. Publishing, Singapore, 1988, 124–147 | MR | Zbl
[26] Y.-G. Ye, Complex contact threefolds and their contact curves, 1992, arXiv: alg-geom/9202003
[27] Y.-G. Ye, “A note on complex projective threefolds admitting holomorphic contact structures”, Invent. Math., 115:2 (1994), 311–314 | MR | Zbl