Angles of the Gaussian simplex
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 79-91

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a $d$-dimensional simplex whose vertices are random points chosen independently according to the standard Gaussian distribution on $\mathbb R^d$. We prove that the expected angle sum of this random simplex equals the angle sum of the regular simplex of the same dimension $d$.
@article{ZNSL_2018_476_a4,
     author = {Z. Kabluchko and D. Zaporozhets},
     title = {Angles of the {Gaussian} simplex},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {476},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a4/}
}
TY  - JOUR
AU  - Z. Kabluchko
AU  - D. Zaporozhets
TI  - Angles of the Gaussian simplex
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 79
EP  - 91
VL  - 476
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a4/
LA  - en
ID  - ZNSL_2018_476_a4
ER  - 
%0 Journal Article
%A Z. Kabluchko
%A D. Zaporozhets
%T Angles of the Gaussian simplex
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 79-91
%V 476
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a4/
%G en
%F ZNSL_2018_476_a4
Z. Kabluchko; D. Zaporozhets. Angles of the Gaussian simplex. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 79-91. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a4/