Angles of the Gaussian simplex
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 79-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider a $d$-dimensional simplex whose vertices are random points chosen independently according to the standard Gaussian distribution on $\mathbb R^d$. We prove that the expected angle sum of this random simplex equals the angle sum of the regular simplex of the same dimension $d$.
@article{ZNSL_2018_476_a4,
     author = {Z. Kabluchko and D. Zaporozhets},
     title = {Angles of the {Gaussian} simplex},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {79--91},
     year = {2018},
     volume = {476},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a4/}
}
TY  - JOUR
AU  - Z. Kabluchko
AU  - D. Zaporozhets
TI  - Angles of the Gaussian simplex
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 79
EP  - 91
VL  - 476
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a4/
LA  - en
ID  - ZNSL_2018_476_a4
ER  - 
%0 Journal Article
%A Z. Kabluchko
%A D. Zaporozhets
%T Angles of the Gaussian simplex
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 79-91
%V 476
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a4/
%G en
%F ZNSL_2018_476_a4
Z. Kabluchko; D. Zaporozhets. Angles of the Gaussian simplex. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 79-91. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a4/

[1] E. Bosetto, “Systems of stochastically independent and normally distributed random points in the Euclidean space $E_3$”, Beiträge Algebra Geom., 40:2 (1999), 291–301 | MR | Zbl

[2] D. V. Feldman, D. A. Klain, “Angles as probabilities”, Amer. Math. Monthly, 116:8 (2009), 732–735 | DOI | MR | Zbl

[3] S. Finch, Random Gaussian tetrahedra, 2010, arXiv: 1005.1033

[4] S. Ivanov, Private communication, 2018

[5] Z. Kabluchko, C. Thäle, D. Zaporozhets, Beta polytopes and Poisson polyhedra: $f$-vectors and angles, 2018, arXiv: 1805.01338

[6] Z. Kabluchko, D. Zaporozhets, Absorption probabilities for Gaussian polytopes, and regular spherical simplices, 2017, arXiv: 1704.04968

[7] C. A. Rogers, “The packing of equal spheres”, Proc. London Math. Soc. (3), 8 (1958), 609–620 | DOI | MR | Zbl

[8] L. Schläfli, “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, 1950, 167–387 | DOI

[9] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer-Verlag, Berlin, 2008 | MR | Zbl

[10] A. M. Vershik, P. V. Sporyshev, “Asymptotic behavior of the number of faces of random polyhedra and the neighborliness problem”, Selecta Math. Soviet., 11:2 (1992), 181–201 | MR | Zbl