Existenсe of convex polyhedra with prescribed development
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 50-78
Cet article a éte moissonné depuis la source Math-Net.Ru
This article is the publication of the Ph.D. thesis of Yurii Aleksandrovich Volkov (1930–1981), in which the famous theorem of A. D. Aleksandrov on the existence of a convex polyhedron with a given development is proved using a variational method.
@article{ZNSL_2018_476_a3,
author = {Yu. A. Volkov},
title = {Existen{\cyrs}e of convex polyhedra with prescribed development},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {50--78},
year = {2018},
volume = {476},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a3/}
}
Yu. A. Volkov. Existenсe of convex polyhedra with prescribed development. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 50-78. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a3/
[1] A. D. Aleksandrov, Vypuklye mnogogranniki, Gostekhizdat, M.–L., 1950 | MR
[2] A. D. Aleksandrov, Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhizdat, M.–L., 1948 | MR
[3] N. V. Efimov, “Kachestvennye voprosy teorii deformatsii poverkhnostei”, UMN, 3:2(24) (1948), 47–158 | MR | Zbl
[4] W. Blaschke, G. Herglotz, “Über die Verwirklichung einer geschlossenen Fläche mit vorgeschriebenem Bogenelement im Euklidischen Raum”, Sitzungsber. Bayer. Akad. Wiss., 2 (1937), 229–230 | Zbl
[5] A. V. Pogorelov, Izgibanie vypuklykh poverkhnostei, Gostekhizdat, M.–L., 1951 | MR