Existenсe of convex polyhedra with prescribed development
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 50-78
Voir la notice du chapitre de livre
This article is the publication of the Ph.D. thesis of Yurii Aleksandrovich Volkov (1930–1981), in which the famous theorem of A. D. Aleksandrov on the existence of a convex polyhedron with a given development is proved using a variational method.
@article{ZNSL_2018_476_a3,
author = {Yu. A. Volkov},
title = {Existen{\cyrs}e of convex polyhedra with prescribed development},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {50--78},
year = {2018},
volume = {476},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a3/}
}
Yu. A. Volkov. Existenсe of convex polyhedra with prescribed development. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 50-78. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a3/
[1] A. D. Aleksandrov, Vypuklye mnogogranniki, Gostekhizdat, M.–L., 1950 | MR
[2] A. D. Aleksandrov, Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhizdat, M.–L., 1948 | MR
[3] N. V. Efimov, “Kachestvennye voprosy teorii deformatsii poverkhnostei”, UMN, 3:2(24) (1948), 47–158 | MR | Zbl
[4] W. Blaschke, G. Herglotz, “Über die Verwirklichung einer geschlossenen Fläche mit vorgeschriebenem Bogenelement im Euklidischen Raum”, Sitzungsber. Bayer. Akad. Wiss., 2 (1937), 229–230 | Zbl
[5] A. V. Pogorelov, Izgibanie vypuklykh poverkhnostei, Gostekhizdat, M.–L., 1951 | MR