Differential structures of Frölicher spaces on tangent curves
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 34-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the differential-geometric structures of the Frölicher spaces for a singular manifold, which consists of two tangent curves. Calculations for two types of structures lead either to the $\infty$-flatness of the curves, which at a singular point pass from one branch to another, or to the $\infty$-flatness of functions. In the second case, smooth curves can change the branch of motion, their velocity vector at a singular point is zero.
@article{ZNSL_2018_476_a2,
     author = {S. N. Bur'yan},
     title = {Differential structures of {Fr\"olicher} spaces on tangent curves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--49},
     year = {2018},
     volume = {476},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a2/}
}
TY  - JOUR
AU  - S. N. Bur'yan
TI  - Differential structures of Frölicher spaces on tangent curves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 34
EP  - 49
VL  - 476
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a2/
LA  - ru
ID  - ZNSL_2018_476_a2
ER  - 
%0 Journal Article
%A S. N. Bur'yan
%T Differential structures of Frölicher spaces on tangent curves
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 34-49
%V 476
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a2/
%G ru
%F ZNSL_2018_476_a2
S. N. Bur'yan. Differential structures of Frölicher spaces on tangent curves. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 34-49. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a2/

[1] J. Śniatycki, Orbits of families of vector fields on subcartesian spaces, 2002, arXiv: math/0211212 | MR

[2] T. Lusala, J. Śniatycki, J. Watts, Regular points of a subcartesian space, 2008, arXiv: 0803.1147 | MR

[3] “Differential forms on differential spaces”, R. Maka, P. Urbanski, 27:1 (1994), 99–108 | MR

[4] “An approach to Hamiltonian mechanics on glued symplectic pseudomanifolds”, T. A. Batubenge, W. Sasin, 41:4 (2008), 941–960 | MR | Zbl

[5] M. Laubinger, Differential Geometry in Cartesian Closed Categories of Smooth Spaces, Ph.D. thesis, 2008

[6] J. Watts, Diffeologies, Differential Spaces, and Symplectic Geometry, Ph.D. thesis, 2012 | MR

[7] S. N. Burian, V. S. Kalnitsky, “On the Motion of One-Dimensional Double Pendulum”, AIP Conference Proceedings, 1959, 2018, 030004 | DOI

[8] C. N. Buryan, “Osobennosti dvizheniya mayatnika s singulyarnym konfiguratsionnym prostranstvom”, Vestnik SPbGU. Matematika. Mekhanika. Astronomiya, 4(62):4 (2017), 541–551 | MR