Planar diagrams of surface-links
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 165-186
Voir la notice du chapitre de livre
The paper discusses planar diagrams (called charts by S. Kamada) for embedded (in $\Re^{4}$) or mapped in general position (in $\Re^{3}$) surfaces and shows that the diagrams are very suitable for dealing with such surfaces and for easy construction of surface mappings with specific properties. A series of examples is constructed, including an example of a sphere immersion with two triple points and a unique double line.
@article{ZNSL_2018_476_a12,
author = {A. V. Tikhonov},
title = {Planar diagrams of surface-links},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {165--186},
year = {2018},
volume = {476},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a12/}
}
A. V. Tikhonov. Planar diagrams of surface-links. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 165-186. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a12/
[1] S. Carter, S. Kamada, M. Saito, Surfaces in $4$-Space. Low-Dimensional Topology III, Encyclopaedia of Mathematical Sciences, 142, Springer-Verlag, Berlin, 2004 | DOI | MR
[2] Dzh. Fransis, Knizhka s kartinkami po topologii, Mir, M., 1991
[3] D. Gilbert, S. Kon-Fossen, Naglyadnaya geometriya, Nauka, M., 1981
[4] K. Kawamura, “On relationship between seven types of Roseman moves”, Topology Appl., Part B, 196 (2015), 551–557 | DOI | MR | Zbl