Planar diagrams of surface-links
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 165-186
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper discusses planar diagrams (called charts by S. Kamada) for embedded (in $\Re^{4}$) or mapped in general position (in $\Re^{3}$) surfaces and shows that the diagrams are very suitable for dealing with such surfaces and for easy construction of surface mappings with specific properties. A series of examples is constructed, including an example of a sphere immersion with two triple points and a unique double line.
@article{ZNSL_2018_476_a12,
     author = {A. V. Tikhonov},
     title = {Planar diagrams of surface-links},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--186},
     year = {2018},
     volume = {476},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a12/}
}
TY  - JOUR
AU  - A. V. Tikhonov
TI  - Planar diagrams of surface-links
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 165
EP  - 186
VL  - 476
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a12/
LA  - ru
ID  - ZNSL_2018_476_a12
ER  - 
%0 Journal Article
%A A. V. Tikhonov
%T Planar diagrams of surface-links
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 165-186
%V 476
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a12/
%G ru
%F ZNSL_2018_476_a12
A. V. Tikhonov. Planar diagrams of surface-links. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 165-186. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a12/

[1] S. Carter, S. Kamada, M. Saito, Surfaces in $4$-Space. Low-Dimensional Topology III, Encyclopaedia of Mathematical Sciences, 142, Springer-Verlag, Berlin, 2004 | DOI | MR

[2] Dzh. Fransis, Knizhka s kartinkami po topologii, Mir, M., 1991

[3] D. Gilbert, S. Kon-Fossen, Naglyadnaya geometriya, Nauka, M., 1981

[4] K. Kawamura, “On relationship between seven types of Roseman moves”, Topology Appl., Part B, 196 (2015), 551–557 | DOI | MR | Zbl