On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 5-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The fractional linear action of $\mathrm{SO}(3,3)$ on the projective space $\mathrm{SO}(3)$ is proven to be a (globally defined) projective action.
			
            
            
            
          
        
      @article{ZNSL_2018_476_a0,
     author = {A. A. Akopyan and A. V. Levichev},
     title = {On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {476},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/}
}
                      
                      
                    TY  - JOUR
AU  - A. A. Akopyan
AU  - A. V. Levichev
TI  - On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 5
EP  - 19
VL  - 476
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/
LA  - en
ID  - ZNSL_2018_476_a0
ER  - 
                      
                      
                    A. A. Akopyan; A. V. Levichev. On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/
                  
                