On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The fractional linear action of $\mathrm{SO}(3,3)$ on the projective space $\mathrm{SO}(3)$ is proven to be a (globally defined) projective action.
@article{ZNSL_2018_476_a0,
     author = {A. A. Akopyan and A. V. Levichev},
     title = {On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--19},
     year = {2018},
     volume = {476},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/}
}
TY  - JOUR
AU  - A. A. Akopyan
AU  - A. V. Levichev
TI  - On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 5
EP  - 19
VL  - 476
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/
LA  - en
ID  - ZNSL_2018_476_a0
ER  - 
%0 Journal Article
%A A. A. Akopyan
%A A. V. Levichev
%T On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 5-19
%V 476
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/
%G en
%F ZNSL_2018_476_a0
A. A. Akopyan; A. V. Levichev. On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/

[1] G. M. Beffa, M. Eastwood, Geometric Poisson brackets on Grassmanians and conformal spheres, 2010, arXiv: 1006.5753v1 | MR

[2] M. Eastwood, “Variations on the de Rham complex”, Notices Amer. Math. Soc., 46:11 (1999), 1368–1376 | MR | Zbl

[3] A. V. Levichev, “Pseudo-Hermitian realization of the Minkowski world through the DLF-theory”, Physica Scripta, 83:1 (2011), 1–9 | DOI | Zbl

[4] A. L. Onishchik, R. Sulanke, Projective and Cayley-Klein Geometries, Springer-Verlag, Berlin, 2006 | MR | Zbl

[5] S. M. Paneitz, I. E. Segal, “Analysis in space-time bundles. I. General considerations and the scalar bundle”, J. Funct. Anal., 47:1 (1982), 78–142 | DOI | MR | Zbl

[6] D. P. Zhelobenko, A. I. Stern, Representations of Lie groups, Nauka, M., 1983 (Russian) | MR | Zbl