@article{ZNSL_2018_476_a0,
author = {A. A. Akopyan and A. V. Levichev},
title = {On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--19},
year = {2018},
volume = {476},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/}
}
A. A. Akopyan; A. V. Levichev. On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a0/
[1] G. M. Beffa, M. Eastwood, Geometric Poisson brackets on Grassmanians and conformal spheres, 2010, arXiv: 1006.5753v1 | MR
[2] M. Eastwood, “Variations on the de Rham complex”, Notices Amer. Math. Soc., 46:11 (1999), 1368–1376 | MR | Zbl
[3] A. V. Levichev, “Pseudo-Hermitian realization of the Minkowski world through the DLF-theory”, Physica Scripta, 83:1 (2011), 1–9 | DOI | Zbl
[4] A. L. Onishchik, R. Sulanke, Projective and Cayley-Klein Geometries, Springer-Verlag, Berlin, 2006 | MR | Zbl
[5] S. M. Paneitz, I. E. Segal, “Analysis in space-time bundles. I. General considerations and the scalar bundle”, J. Funct. Anal., 47:1 (1982), 78–142 | DOI | MR | Zbl
[6] D. P. Zhelobenko, A. I. Stern, Representations of Lie groups, Nauka, M., 1983 (Russian) | MR | Zbl