On the chromatic numbers corresponding to exponentially Ramsey sets
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 174-189
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, nontrivial upper bounds on the chromatic numbers of the spaces $\mathbb{R}^n_p=(\mathbb{R}^n, l_p)$ with forbidden monochromatic sets are proved. In the case of forbidden rectangular parallelepiped or a regular simplex, explicit exponential lower bounds on the chromatic numbers are obtained. Exact values of the chromatic numbers of the spaces $\mathbb{R}^n_p$ with forbidden regular simplex in case $p = \infty$ are found.
@article{ZNSL_2018_475_a7,
author = {A. A. Sagdeev},
title = {On the chromatic numbers corresponding to exponentially {Ramsey} sets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {174--189},
publisher = {mathdoc},
volume = {475},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a7/}
}
A. A. Sagdeev. On the chromatic numbers corresponding to exponentially Ramsey sets. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 174-189. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a7/