On the chromatic numbers corresponding to exponentially Ramsey sets
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 174-189

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, nontrivial upper bounds on the chromatic numbers of the spaces $\mathbb{R}^n_p=(\mathbb{R}^n, l_p)$ with forbidden monochromatic sets are proved. In the case of forbidden rectangular parallelepiped or a regular simplex, explicit exponential lower bounds on the chromatic numbers are obtained. Exact values of the chromatic numbers of the spaces $\mathbb{R}^n_p$ with forbidden regular simplex in case $p = \infty$ are found.
@article{ZNSL_2018_475_a7,
     author = {A. A. Sagdeev},
     title = {On the chromatic numbers corresponding to exponentially {Ramsey} sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--189},
     publisher = {mathdoc},
     volume = {475},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a7/}
}
TY  - JOUR
AU  - A. A. Sagdeev
TI  - On the chromatic numbers corresponding to exponentially Ramsey sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 174
EP  - 189
VL  - 475
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a7/
LA  - ru
ID  - ZNSL_2018_475_a7
ER  - 
%0 Journal Article
%A A. A. Sagdeev
%T On the chromatic numbers corresponding to exponentially Ramsey sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 174-189
%V 475
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a7/
%G ru
%F ZNSL_2018_475_a7
A. A. Sagdeev. On the chromatic numbers corresponding to exponentially Ramsey sets. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 174-189. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a7/