On critically 3-connected graphs with exactly two vertices of degree~3. Part~2
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 137-173

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is critically $3$-connected, if $G$ is $3$-connected and for any vertex $v\in V(G)$ the graph $G-v$ isn't $3$-connected. R. C. Entringer and P. J. Slater proved that any critically $3$-connected graph contains at least two vertices of degree $3$. In the previous paper we classify all such graphs with one additional condition: two vertices of degree $3$ are adjacent. In this paper we will consider the case of nonadjacent vertices of degree $3$.
@article{ZNSL_2018_475_a6,
     author = {A. V. Pastor},
     title = {On critically 3-connected graphs with exactly two vertices of degree~3. {Part~2}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--173},
     publisher = {mathdoc},
     volume = {475},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a6/}
}
TY  - JOUR
AU  - A. V. Pastor
TI  - On critically 3-connected graphs with exactly two vertices of degree~3. Part~2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 137
EP  - 173
VL  - 475
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a6/
LA  - ru
ID  - ZNSL_2018_475_a6
ER  - 
%0 Journal Article
%A A. V. Pastor
%T On critically 3-connected graphs with exactly two vertices of degree~3. Part~2
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 137-173
%V 475
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a6/
%G ru
%F ZNSL_2018_475_a6
A. V. Pastor. On critically 3-connected graphs with exactly two vertices of degree~3. Part~2. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 137-173. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a6/