On critically 3-connected graphs with exactly two vertices of degree 3. Part 2
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 137-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A graph $G$ is critically $3$-connected, if $G$ is $3$-connected and for any vertex $v\in V(G)$ the graph $G-v$ isn't $3$-connected. R. C. Entringer and P. J. Slater proved that any critically $3$-connected graph contains at least two vertices of degree $3$. In the previous paper we classify all such graphs with one additional condition: two vertices of degree $3$ are adjacent. In this paper we will consider the case of nonadjacent vertices of degree $3$.
@article{ZNSL_2018_475_a6,
     author = {A. V. Pastor},
     title = {On critically 3-connected graphs with exactly two vertices of degree~3. {Part~2}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--173},
     year = {2018},
     volume = {475},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a6/}
}
TY  - JOUR
AU  - A. V. Pastor
TI  - On critically 3-connected graphs with exactly two vertices of degree 3. Part 2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 137
EP  - 173
VL  - 475
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a6/
LA  - ru
ID  - ZNSL_2018_475_a6
ER  - 
%0 Journal Article
%A A. V. Pastor
%T On critically 3-connected graphs with exactly two vertices of degree 3. Part 2
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 137-173
%V 475
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a6/
%G ru
%F ZNSL_2018_475_a6
A. V. Pastor. On critically 3-connected graphs with exactly two vertices of degree 3. Part 2. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 137-173. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a6/

[1] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93 | Zbl

[2] D. V. Karpov, “Razdelyayuschie mnozhestva v $k$-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60 | Zbl

[3] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105

[4] D. V. Karpov, “Derevo razrezov i minimalnyi $k$-svyaznyi graf”, Zap. nauchn. semin. POMI, 427, 2014, 22–40

[5] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106

[6] D. V. Karpov, A. V. Pastor, “Struktura razbieniya trekhsvyaznogo grafa”, Zap. nauchn. semin. POMI, 391, 2011, 90–148

[7] A. V. Pastor, “O razbienii trekhsvyaznogo grafa na tsiklicheski reberno-chetyrekhsvyaznye komponenty”, Zap. nauchn. semin. POMI, 450, 2016, 109–150

[8] A. V. Pastor, “O kriticheskikh trekhsvyaznykh grafakh rovno s dvumya vershinami stepeni 3. Chast 1”, Zap. nauchn. semin. POMI, 464, 2017, 95–111

[9] G. Chartrand, A. Kaugars, D. R. Lick, “Critically $n$-connected graphs”, Proc. Amer. Math. Soc., 32 (1972), 63–68 | MR

[10] R. C. Entringer, P. J. Slater, “A theorem on critically $3$-connected graphs”, Nanta Math., 11:2 (1978), 141–145 | MR | Zbl

[11] Y. O. Hamidoune, “On critically $h$-connected simple graphs”, Discr. Math., 32 (1980), 257–262 | DOI | MR | Zbl

[12] W. Hohberg, “The decomposition of graphs into $k$-connected components”, Discr. Math., 109 (1992), 133–145 | DOI | MR | Zbl

[13] L. Nebeský, “On induced subgraphs of a block”, J. Graph Theory, 1 (1977), 69–74 | DOI | MR | Zbl

[14] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966 | MR | Zbl

[15] H. J. Veldman, “Non-$\kappa$-critical vertices in graphs”, Discr. Math., 44 (1983), 105–110 | DOI | MR | Zbl