On the complexity of unique Circuit SAT
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 122-136
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Circuit SAT problem for a circuit with at most one satisfying assignment. We present an algorithm running in time $O(2^{.374589m})$, where $m$ is the number of internal gates of the circuit. In order to make the exposition self-contained, we also describe the algorithm for the general case of Circuit SAT with running time $O(2^{.389667m})$ obtained by Savinov in [10].
@article{ZNSL_2018_475_a5,
author = {A. A. Lialina},
title = {On the complexity of unique {Circuit} {SAT}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--136},
publisher = {mathdoc},
volume = {475},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a5/}
}
A. A. Lialina. On the complexity of unique Circuit SAT. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 122-136. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a5/