On spanning trees without vertices of degree 2 in plane triangulations
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 93-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a $2$-connected plane graph such that at most one its face is not a triangle. It is proved that $G$ has a spanning tree without vertices of degree $2$.
@article{ZNSL_2018_475_a3,
     author = {D. V. Karpov},
     title = {On spanning trees without vertices of degree 2 in plane triangulations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {475},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a3/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - On spanning trees without vertices of degree 2 in plane triangulations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 93
EP  - 98
VL  - 475
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a3/
LA  - ru
ID  - ZNSL_2018_475_a3
ER  - 
%0 Journal Article
%A D. V. Karpov
%T On spanning trees without vertices of degree 2 in plane triangulations
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 93-98
%V 475
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a3/
%G ru
%F ZNSL_2018_475_a3
D. V. Karpov. On spanning trees without vertices of degree 2 in plane triangulations. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 93-98. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a3/