On the structure of a 3-connected graph.  2
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 41-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, the structure of relative disposition of $3$-vertex cutsets in a $3$-connected graph is studied. All such cutsets are divided into structural units — complexes of flowers, of cuts, of single cutsets and trivial complexes. The decomposition of the graph by a complex of each type is described in detail. It is proved that for any two complexes ${\mathcal C}_1$ and ${\mathcal C}_2 $ of a $3$-connected graph $G$ there is a unique part of decomposition of $G$ by ${\mathcal C}_1$, that contains ${\mathcal C}_2 $. The relative disposition of complexes is described with the help of a hypertree ${\mathcal T}(G)$ — a hypergraph, any cycle of which is a subset of a certain hyperedge. It is also proved that each nonempty part of decomposition of $G$ by the set of all its $3$-vertex cutsets is either a part of decomposition of $G$ by one of the complexes or corresponds to a hyperedge of ${\mathcal T}(G)$. This paper can be considered as a continuation of studies begun in the joint paper by D.V. Karpov and A.V. Pastor On the structure of a $3$-connected graph published in 2011.
@article{ZNSL_2018_475_a2,
     author = {D. V. Karpov},
     title = {On the structure of a 3-connected graph.~ 2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {41--92},
     year = {2018},
     volume = {475},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a2/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - On the structure of a 3-connected graph.  2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 41
EP  - 92
VL  - 475
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a2/
LA  - ru
ID  - ZNSL_2018_475_a2
ER  - 
%0 Journal Article
%A D. V. Karpov
%T On the structure of a 3-connected graph.  2
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 41-92
%V 475
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a2/
%G ru
%F ZNSL_2018_475_a2
D. V. Karpov. On the structure of a 3-connected graph.  2. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 41-92. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a2/

[1] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966 | MR | Zbl

[2] F. Harary, Graph theory, 1969

[3] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106

[4] D. V. Karpov, A. V. Pastor, “Struktura razbieniya trekhsvyaznogo grafa”, Zap. nauchn. semin. POMI, 391, 2011, 90–148

[5] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93 | Zbl

[6] D. V. Karpov, “Razdelyayuschie mnozhestva v k-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60 | Zbl

[7] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105

[8] D. V. Karpov, “Razbienie dvusvyaznogo grafa na tri svyaznykh podgrafa”, Zap. nauchn. semin. POMI, 464, 2017, 26–47

[9] D. V. Karpov, “Large contractible subgraphs of a $3$-connected graph”, Discussiones Mathematicae Graph Theory (to appear)

[10] A. V. Pastor, “O razbienii trekhsvyaznogo grafa na tsiklicheski reberno-chetyrekhsvyaznye komponenty”, Zap. nauchn. semin. POMI, 450, 2016, 109–150