On contractible 5-vertex subgraphs of a 3-connected graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 22-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A subset $H$ of the set of vertices of a $3$-connected finite graph $G$ is called contractible if $G(H)$ is connected and $G - H$ is $2$-connected. We prove that every $3$-connected graph on at least $11$ vertices with minimal degree at least $4$ has a contractible set on $5$ vertices.
@article{ZNSL_2018_475_a1,
     author = {N. Yu. Vlasova},
     title = {On contractible 5-vertex subgraphs of a 3-connected graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--40},
     year = {2018},
     volume = {475},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a1/}
}
TY  - JOUR
AU  - N. Yu. Vlasova
TI  - On contractible 5-vertex subgraphs of a 3-connected graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 22
EP  - 40
VL  - 475
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a1/
LA  - ru
ID  - ZNSL_2018_475_a1
ER  - 
%0 Journal Article
%A N. Yu. Vlasova
%T On contractible 5-vertex subgraphs of a 3-connected graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 22-40
%V 475
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a1/
%G ru
%F ZNSL_2018_475_a1
N. Yu. Vlasova. On contractible 5-vertex subgraphs of a 3-connected graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 22-40. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a1/

[1] M. Kriesell, “Contractible subgraphs in $3$-connected graphs”, J. Comb. Theory Ser. B, 80 (2000), 32–48 | DOI | MR | Zbl

[2] M. Kriesell, “On small contractible subgraphs in $3$-connected graphs of small avarage degree”, Mathematisches Seminar der Universitat Hamburg (Bundesstrabe 55, D-20146 Hamburg)

[3] W. McCuaig, K. Ota, “Contractible triples in $3$-connected graphs”, J. Comb. Theory Ser. B, 60 (1994), 308–314 | DOI | MR | Zbl

[4] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966 | MR | Zbl

[5] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106

[6] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93 | Zbl

[7] D. V. Karpov, “Razdelyayuschie mnozhestva v k-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60 | Zbl

[8] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105

[9] D. V. Karpov, “Minimalnye dvusvyaznye grafy”, Zap. nauchn. semin. POMI, 417, 2013, 106–127

[10] D. V. Karpov, “Large contractible subgraphs of a $3$-connected graph”, Discussiones Mathematicae Graph Theory (to appear) | DOI