On contractible 5-vertex subgraphs of a 3-connected graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 22-40

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $H$ of the set of vertices of a $3$-connected finite graph $G$ is called contractible if $G(H)$ is connected and $G - H$ is $2$-connected. We prove that every $3$-connected graph on at least $11$ vertices with minimal degree at least $4$ has a contractible set on $5$ vertices.
@article{ZNSL_2018_475_a1,
     author = {N. Yu. Vlasova},
     title = {On contractible  5-vertex subgraphs of a 3-connected graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--40},
     publisher = {mathdoc},
     volume = {475},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a1/}
}
TY  - JOUR
AU  - N. Yu. Vlasova
TI  - On contractible  5-vertex subgraphs of a 3-connected graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 22
EP  - 40
VL  - 475
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a1/
LA  - ru
ID  - ZNSL_2018_475_a1
ER  - 
%0 Journal Article
%A N. Yu. Vlasova
%T On contractible  5-vertex subgraphs of a 3-connected graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 22-40
%V 475
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a1/
%G ru
%F ZNSL_2018_475_a1
N. Yu. Vlasova. On contractible  5-vertex subgraphs of a 3-connected graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 22-40. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a1/