The structure of minimum-weight directed forests: related forests and convexity inequalities
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A toolkit has been developed that allows to build directed forests from another directed forests. this toolkit helps to prove inequalities that connect the weights of minimal directed forests with different numbers of trees in them. Theorem on related forests hoe to transform a the minimal directed forest into another minimal directed forest with the number of roots less or greater by one.
@article{ZNSL_2018_475_a0,
     author = {V. A. Buslov},
     title = {The structure of minimum-weight directed forests: related forests and convexity inequalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     year = {2018},
     volume = {475},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a0/}
}
TY  - JOUR
AU  - V. A. Buslov
TI  - The structure of minimum-weight directed forests: related forests and convexity inequalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 5
EP  - 21
VL  - 475
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a0/
LA  - ru
ID  - ZNSL_2018_475_a0
ER  - 
%0 Journal Article
%A V. A. Buslov
%T The structure of minimum-weight directed forests: related forests and convexity inequalities
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 5-21
%V 475
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a0/
%G ru
%F ZNSL_2018_475_a0
V. A. Buslov. The structure of minimum-weight directed forests: related forests and convexity inequalities. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a0/

[1] A. D. Venttsel, “Ob asimptotike sobstvennykh znachenii matrits s elementami poryadka $\exp\{-V_{ij}/2\varepsilon^2\}$”, DAN SSSR, 202:2 (1972), 263–266

[2] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, M., 1979, 429 pp.

[3] V. A. Buslov, K. A. Makarov, “Ierarkhiya masshtabov vremeni pri maloi diffuzii”, TMF, 76:2 (1988), 219–230 | Zbl

[4] V. A. Buslov, K. A. Makarov, “Vremena zhizni i nizshie sobstvennye znacheniya operatora maloi diffuzii”, Mat. zametki, 51:1 (1992), 20–31 | Zbl

[5] V. A. Buslov, “O kharakteristicheskom mnogochlene i sobstvennykh vektorakh v terminakh drevovidnoi struktury orgrafa”, Zap. nauchn. sem. POMI, 450 (2016), 14–36

[6] V. A. Buslov, “O svyazi kratnostei spektra so znakami slagaemykh v komponentakh sobstvennykh vektorov v drevovidnoi strukture”, Zap. nauchn. sem. POMI, 464 (2017), 14–36

[7] V. A. Buslov, “O koeffitsientakh kharakteristicheskogo mnogochlena laplasiana vzveshennogo orientirovannogo grafa i teoreme o vsekh minorakh”, Zap. nauchn. sem. POMI, 427 (2014), 5–21. | Zbl

[8] S. Chaiken, “A combinatorial proof of the all minors matrix tree theorem”, SIAM Journal on Algebraic and Discrete Methods, 3:3 (1982), 319–329 | DOI | MR | Zbl

[9] J. W. Moon, “Some determinant expansions and the matrix-tree theorem”, Discrete Mathematics, 124 (1994), 163–171 | DOI | MR | Zbl

[10] P. Chebotarev, R. Agaev, “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, 356 (2002), 253–274 | DOI | MR | Zbl