@article{ZNSL_2018_475_a0,
author = {V. A. Buslov},
title = {The structure of minimum-weight directed forests: related forests and convexity inequalities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--21},
year = {2018},
volume = {475},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a0/}
}
V. A. Buslov. The structure of minimum-weight directed forests: related forests and convexity inequalities. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part X, Tome 475 (2018), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2018_475_a0/
[1] A. D. Venttsel, “Ob asimptotike sobstvennykh znachenii matrits s elementami poryadka $\exp\{-V_{ij}/2\varepsilon^2\}$”, DAN SSSR, 202:2 (1972), 263–266
[2] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, M., 1979, 429 pp.
[3] V. A. Buslov, K. A. Makarov, “Ierarkhiya masshtabov vremeni pri maloi diffuzii”, TMF, 76:2 (1988), 219–230 | Zbl
[4] V. A. Buslov, K. A. Makarov, “Vremena zhizni i nizshie sobstvennye znacheniya operatora maloi diffuzii”, Mat. zametki, 51:1 (1992), 20–31 | Zbl
[5] V. A. Buslov, “O kharakteristicheskom mnogochlene i sobstvennykh vektorakh v terminakh drevovidnoi struktury orgrafa”, Zap. nauchn. sem. POMI, 450 (2016), 14–36
[6] V. A. Buslov, “O svyazi kratnostei spektra so znakami slagaemykh v komponentakh sobstvennykh vektorov v drevovidnoi strukture”, Zap. nauchn. sem. POMI, 464 (2017), 14–36
[7] V. A. Buslov, “O koeffitsientakh kharakteristicheskogo mnogochlena laplasiana vzveshennogo orientirovannogo grafa i teoreme o vsekh minorakh”, Zap. nauchn. sem. POMI, 427 (2014), 5–21. | Zbl
[8] S. Chaiken, “A combinatorial proof of the all minors matrix tree theorem”, SIAM Journal on Algebraic and Discrete Methods, 3:3 (1982), 319–329 | DOI | MR | Zbl
[9] J. W. Moon, “Some determinant expansions and the matrix-tree theorem”, Discrete Mathematics, 124 (1994), 163–171 | DOI | MR | Zbl
[10] P. Chebotarev, R. Agaev, “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, 356 (2002), 253–274 | DOI | MR | Zbl