An estimation problem for the intensity density of Poisson processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 139-148
Cet article a éte moissonné depuis la source Math-Net.Ru
A Poisson process $X_\varepsilon(t)$ with the intensity density function $\varepsilon^{-1}\lambda(t)$ is observed on an interval $[a,b]$. The problem is to estimate the function $\lambda(t)$. It is known that the unknown function $\lambda(t)$ belongs to a given class of functions analytic in a given region $G\supset[a,b]$ and is bounded there by a given constant $M$. The parameter $\varepsilon$ is supposed to be known and we consider the problem as $\varepsilon\to0$.
@article{ZNSL_2018_474_a9,
author = {I. A. Ibragimov},
title = {An estimation problem for the intensity density of {Poisson} processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {139--148},
year = {2018},
volume = {474},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a9/}
}
I. A. Ibragimov. An estimation problem for the intensity density of Poisson processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 139-148. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a9/
[1] I. Ibragimov, “On estimation of analytic functions”, Studia Sci. Math. Hungarica, 34 (1998), 191–210 | MR | Zbl
[2] S. N. Bernshtein, Ekstremalnye svoistva polinomov, ONTI, L.-M., 1937
[3] G. Sege, Ortogonalnye mnogochleny, Fizmatlit, M., 1962
[4] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh velichin, Nauka, M., 1987
[5] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[6] I. A. Ibragimov, “O nizhnikh granitsakh tochnosti neparametricheskogo otsenivaniya”, Zap. nauchn. semin. POMI, 396, 2011, 102–110
[7] Yu. A. Kutoyants, Statistical Inference for Spatial Poisson Processes, Lecture Notes in Statist., 134, Springer, 1998 | DOI | MR | Zbl