An estimation problem for the intensity density of Poisson processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 139-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Poisson process $X_\varepsilon(t)$ with the intensity density function $\varepsilon^{-1}\lambda(t)$ is observed on an interval $[a,b]$. The problem is to estimate the function $\lambda(t)$. It is known that the unknown function $\lambda(t)$ belongs to a given class of functions analytic in a given region $G\supset[a,b]$ and is bounded there by a given constant $M$. The parameter $\varepsilon$ is supposed to be known and we consider the problem as $\varepsilon\to0$.
@article{ZNSL_2018_474_a9,
     author = {I. A. Ibragimov},
     title = {An estimation problem for the intensity density of {Poisson} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--148},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a9/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - An estimation problem for the intensity density of Poisson processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 139
EP  - 148
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a9/
LA  - ru
ID  - ZNSL_2018_474_a9
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T An estimation problem for the intensity density of Poisson processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 139-148
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a9/
%G ru
%F ZNSL_2018_474_a9
I. A. Ibragimov. An estimation problem for the intensity density of Poisson processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 139-148. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a9/

[1] I. Ibragimov, “On estimation of analytic functions”, Studia Sci. Math. Hungarica, 34 (1998), 191–210 | MR | Zbl

[2] S. N. Bernshtein, Ekstremalnye svoistva polinomov, ONTI, L.-M., 1937

[3] G. Sege, Ortogonalnye mnogochleny, Fizmatlit, M., 1962

[4] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh velichin, Nauka, M., 1987

[5] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[6] I. A. Ibragimov, “O nizhnikh granitsakh tochnosti neparametricheskogo otsenivaniya”, Zap. nauchn. semin. POMI, 396, 2011, 102–110

[7] Yu. A. Kutoyants, Statistical Inference for Spatial Poisson Processes, Lecture Notes in Statist., 134, Springer, 1998 | DOI | MR | Zbl