On asymptotically minimax detection of signal in Gaussian white noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 124-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the problem of nonparametric detection of signal in Gaussian white noise, we find asymptotically minimax tests on maxisets.
@article{ZNSL_2018_474_a8,
     author = {M. S. Ermakov},
     title = {On asymptotically minimax detection of signal in {Gaussian} white noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--138},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a8/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - On asymptotically minimax detection of signal in Gaussian white noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 124
EP  - 138
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a8/
LA  - ru
ID  - ZNSL_2018_474_a8
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T On asymptotically minimax detection of signal in Gaussian white noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 124-138
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a8/
%G ru
%F ZNSL_2018_474_a8
M. S. Ermakov. On asymptotically minimax detection of signal in Gaussian white noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 124-138. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a8/

[1] F. Autin, M. Clausel, J. Freyermuth, C. Marteau, Maxiset point of view for signal detection in inverse problems, 2018, arXiv: 1803.05875

[2] L. Comminges, A. S. Dalalyan, “Minimax testing of a composite null hypothesis defined via a quadratic functional in the model of regression”, Elect. J. Statist., 7 (2013), 146–190 | DOI | MR | Zbl

[3] M. S. Ermakov, “Minimaksnoe obnaruzhenie signala v gaussovskom belom shume”, Teoriya veroyatn. i ee primen., 35 (1990), 667–679 | Zbl

[4] M. S. Ermakov, “Minimaksnoe obnaruzhenie signala v tsvetnom gaussovskom belom shume”, Zap. nauchn. semin. POMI, 320, 2004, 54–70

[5] M. S. Ermakov, “Minimaksnoe neparametricheskoe otsenivanie na naibolshikh mnozhestvakh”, Zap. nauchn. semin. POMI, 466, 2017, 120–133

[6] M. S. Ermakov, On consistensy and inconsistensy of nonparametric tests, 2018, arXiv: 1807.09076

[7] D. Hsu, S. M. Kakade, T. Zang, “A tail inequality for quadratic forms of subgaussian random vector”, Electr. Commun. Probab., 17:52 (2012), 1–6 | MR

[8] Yu. I. Ingster, “O sravnenii minimaksnykh svoistv kriteriev Kolmogorova, $\omega^2$ i $\chi^2$”, Teoriya veroyatn. i ee primen., 32 (1987), 346–350 | Zbl

[9] Yu. I. Ingster, I. A. Suslina, Nonparametric Goodness-of-fit Testing under Gaussian Models, Lect. Notes Statist., 169, Springer, N.Y., 2002 | MR

[10] Yu. I. Ingster, T. Sapatinas, I. A. Suslina, “Minimax signal detection in ill-posed inverse problems”, Ann. Statist., 40 (2012), 1524–1549 | DOI | MR | Zbl

[11] I. M. Johnstone, Gaussian estimation. Sequence and wavelet models, Book Draft, 2015 http://statweb.stanford.edu/ĩmj

[12] G. Kerkyacharian, D. Picard, “Density estimation by kernel and wavelets methods: optimality of Besov spaces”, Statist. Probab. Lett., 18 (1993), 327–336 | DOI | MR | Zbl

[13] G. Kerkyacharian, D. Picard, Minimax or maxisets?, Bernoulli, 8 (2002), 219–253 | MR | Zbl

[14] B. Laurent, J. M. Loubes, C. Marteau, Testing inverse problems: a direct or an indirect problem?, J. Statist. Planning Inference, 141 (2011), 1849–1861 | DOI | MR | Zbl

[15] M. S. Pinsker, “Optimalnaya filtratsiya kvadratichno integriruemogo signala v gaussovskom belom shume”, Probl. peredachi inform., 16 (1980), 120–133 | Zbl

[16] V. Rivoirard, “Maxisets for linear procedures”, Statist. Probab. Lett., 67 (2004), 267–275 | DOI | MR | Zbl

[17] A. B. Tsybakov, Introduction to Nonparametric Estimation, Springer Series in Statistics, 130, Springer, Berlin, 2009 | DOI | MR