On improvement of the estimate of the distance between sequential sums of independent random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 118-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of the present paper is to improve the previously obtained estimate of the constant in the inequality for the uniform distance between $n$ and $(n + 1)$-fold convolution of one-dimensional probability distributions in the case where distribution $F$ has $0$ as $q$-quantile.
@article{ZNSL_2018_474_a7,
     author = {Ya. S. Golikova},
     title = {On improvement of the estimate of the distance between sequential sums of independent random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--123},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a7/}
}
TY  - JOUR
AU  - Ya. S. Golikova
TI  - On improvement of the estimate of the distance between sequential sums of independent random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 118
EP  - 123
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a7/
LA  - ru
ID  - ZNSL_2018_474_a7
ER  - 
%0 Journal Article
%A Ya. S. Golikova
%T On improvement of the estimate of the distance between sequential sums of independent random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 118-123
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a7/
%G ru
%F ZNSL_2018_474_a7
Ya. S. Golikova. On improvement of the estimate of the distance between sequential sums of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 118-123. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a7/

[1] S. V. Nagaev, S. S. Khodzhabagyan, “Ob otsenke funktsii kontsentratsii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 41:3 (1996), 655–665 | DOI | Zbl

[2] G. Zigel, “Verkhnie otsenki dlya funktsii kontsentratsii v gilbertovom prostranstve”, Teoriya veroyatn. i ee primen., 26:2 (1981), 335–349 | Zbl

[3] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986, 3–214

[4] E. L. Maistrenko, “Otsenka absolyutnoi postoyannoi v neravenstve dlya ravnomernogo rasstoyaniya mezhdu raspredeleniyami posledovatelnykh summ nezavisimykh sluchainykh velichin”, Zap. nauchn. sem. POMI, 454, 2016, 216–219

[5] A. Yu. Zaitsev, “Otsenka blizosti raspredelenii posledovatelnykh summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. LOMI, 97, 1980, 83–87 | Zbl

[6] A. Yu. Zaitsev, “Nekotorye svoistva $n$-kratnykh svertok raspredelenii”, Teoriya veroyatn. i ee primen., 26:1 (1981), 152–156 | Zbl