Estimates for the closeness of convolutions of probability distributions on convex polyhedra
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 108-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of the present work is to show that the results obtained earlier on the approximation of distributions of sums of independent summands by the accompanying compound Poisson laws and the estimates of the proximity of sequential convolutions of multidimensional distributions may be transferred to the estimation of the closeness of convolutions of probability distributions on convex polyhedra.
@article{ZNSL_2018_474_a6,
     author = {F. G\"otze and A. Yu. Zaitsev},
     title = {Estimates for the closeness of convolutions of probability distributions on convex polyhedra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--117},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a6/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. Yu. Zaitsev
TI  - Estimates for the closeness of convolutions of probability distributions on convex polyhedra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 108
EP  - 117
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a6/
LA  - ru
ID  - ZNSL_2018_474_a6
ER  - 
%0 Journal Article
%A F. Götze
%A A. Yu. Zaitsev
%T Estimates for the closeness of convolutions of probability distributions on convex polyhedra
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 108-117
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a6/
%G ru
%F ZNSL_2018_474_a6
F. Götze; A. Yu. Zaitsev. Estimates for the closeness of convolutions of probability distributions on convex polyhedra. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 108-117. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a6/

[1] T. V. Arak, “O sblizhenii $n$-kratnykh svertok raspredelenii, imeyuschikh neotritsatelnuyu kharakteristicheskuyu funktsiyu, s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 25:2 (1980), 225–246 | Zbl

[2] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986, 214

[3] F. Gëttse, A. Yu. Zaitsev, “Redkie sobytiya i puassonovskie tochechnye protsessy”, Zap. nauchn. semin. POMI, 466, 2017, 109–119

[4] A. Yu. Zaitsev, “Otsenka blizosti raspredelenii posledovatelnykh summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. LOMI, 97, 1984, 83–87

[5] A. Yu. Zaitsev, “Nekotorye svoistva $n$-kratnykh svertok raspredelenii”, Teoriya veroyatn. i ee primen., 26:1 (1981), 152–156 | Zbl

[6] A. Yu. Zaitsev, “O tochnosti approksimatsii raspredelenii summ nezavisimykh sluchainykh velichin, otlichnykh ot nulya s maloi veroyatnostyu, s pomoschyu soprovozhdayuschikh zakonov”, Teoriya veroyatn. i ee primen., 28:2 (1983), 625–636 | Zbl

[7] A. Yu. Zaitsev, “K mnogomernomu obobscheniyu metoda treugolnykh funktsii”, Zap. nauchn. semin. LOMI, 158, 1987, 81–104 | Zbl

[8] A. Yu. Zaitsev, “Estimates for the closeness of successive convolutions of multidimensional symmetric distributions”, Probab. Theory Relat. Fields, 79:2 (1988), 175–200 | DOI | MR | Zbl

[9] A. Yu. Zaitsev, “Mnogomernyi variant vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Teoriya veroyatn. i ee primen., 34:1 (1989), 128–151

[10] A. Yu. Zaitsev, “Ob approksimatsii svertok mnogomernykh simmetrichnykh raspredelenii soprovozhdayuschimi zakonami”, Zap. nauchn. semin. LOMI, 177, 1989, 55–72

[11] A. Yu. Zaitsev, “Ob odnom klasse neravnomernykh otsenok v mnogomernykh predelnykh teoremakh”, Zap. nauchn. semin. LOMI, 184, 1990, 92–105 | Zbl

[12] A. Yu. Zaitsev, “Ob approksimatsii vyborki puassonovskim tochechnym protsessom”, Zap. nauchn. semin. POMI, 298, 2003, 111–125 | Zbl