Distribution of complex algebraic numbers on the unit circle
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 90-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For $-\pi\leq\beta_1<\beta_2\leq\pi$ denote by $\Phi_{\beta_1,\beta_2}(Q)$ the number of algebraic numbers on the unit circle with arguments in $[\beta_1,\beta_2]$ of degree $2m$ and with elliptic height at most $Q$. We show that $$ \Phi_{\beta_1,\beta_2}(Q)=Q^{m+1}\int\limits_{\beta_1}^{\beta_2}{p(t)}\,\mathrm{d}t+O\left(Q^m\,\log Q\right),\quad Q\to\infty, $$ where $p(t)$ coincides up to a constant factor with the density of the roots of some random trigonometric polynomial. This density is calculated explicitly using the Edelman–Kostlan formula.
@article{ZNSL_2018_474_a5,
     author = {F. G\"otze and A. Gusakova and Z. Kabluchko and D. Zaporozhets},
     title = {Distribution of complex algebraic numbers on the unit circle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--107},
     year = {2018},
     volume = {474},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a5/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. Gusakova
AU  - Z. Kabluchko
AU  - D. Zaporozhets
TI  - Distribution of complex algebraic numbers on the unit circle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 90
EP  - 107
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a5/
LA  - en
ID  - ZNSL_2018_474_a5
ER  - 
%0 Journal Article
%A F. Götze
%A A. Gusakova
%A Z. Kabluchko
%A D. Zaporozhets
%T Distribution of complex algebraic numbers on the unit circle
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 90-107
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a5/
%G en
%F ZNSL_2018_474_a5
F. Götze; A. Gusakova; Z. Kabluchko; D. Zaporozhets. Distribution of complex algebraic numbers on the unit circle. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 90-107. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a5/

[1] P. Bachmann, Zahlentheorie. II Theil. Die analytische Zahlentheorie, BG Teubner, Leipzig, 1894

[2] F. Calegari, Z. Huang, “Counting Perron numbers by absolute value”, J. London Math. Soc., 96 (2017), 181–200 | DOI | MR | Zbl

[3] S.-J. Chern, J. Vaaler, “The distribution of values of Mahler's measure”, J. reine angew. Math., 540 (2001), 1–47 | DOI | MR | Zbl

[4] H. Davenport, “On a principle of Lipschitz”, J. Lond. Math. Soc., 26:3 (1951), 179–183 | DOI | MR | Zbl

[5] A. Edelman, E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc., 32:1 (1995), 1–37 | DOI | MR | Zbl

[6] K. Fang, Y. Zhang, Generalized Multivariate Analysis, Springer, Berlin, 1990 | MR | Zbl

[7] F. Götze, D. Kaliada, D. Zaporozhets, “Distribution of complex algebraic numbers”, Proc. Amer. Math. Soc., 145:1 (2017), 61–71 ; (2014), arXiv: 1410.3623 | MR

[8] F. Götze, D. Kaliada, D. Zaporozhets, Joint distribution of conjugate algebraic numbers: a random polynomial approach, 2017, arXiv: 1703.02289 | MR

[9] D. Kaliada, On the density function of the distribution of real algebraic numbers, 2014, arXiv: 1405.1627 | MR

[10] S. Lang, Algebraic Number Theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.–London–Don Mills, Ont., 1970 | MR | Zbl

[11] D. Masser, J. D. Vaaler, “Counting algebraic numbers with large height $I$”, Diophantine Approximation, Dev. Math., 16, Springer, Wien–New York–Vienna, 2008, 237–243 | MR | Zbl

[12] H. Rademacher, Lectures on Elementary Number Theory, Huntington, 1977 | MR | Zbl

[13] G. Kuba, “On the distribution of reducible polynomials”, Math. Slovaca, 59:3 (2009), 349–356 | DOI | MR | Zbl

[14] V. V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, 11, Springer, Berlin, 2004 | DOI | MR | Zbl

[15] M. Widmer, “Lipschitz class, narrow class, and counting lattice points”, Proc. Amer. Math. Soc., 140:2 (2012), 677–689 | DOI | MR | Zbl