On the convergence of workload in a service system to Brownian motion with switching variance
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 77-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some modification of the service system model introduced by I. Kaj and M. S. Taqqu is considered. This model describes the dynamics in time and space of various system loads created by a set of service processes. In the model under consideration two types of resource, each having its own load distribution, are used. Such a model can be identified with the presence of two operators of resource. At the time of the failure of the active operator one can switch to another operator whose resource has distribution loads different from the first operator. We prove a limit theorem on the convergence of finite-dimensional distributions of the integral workload process with two types of resource to Brownian motion with switching variance.
@article{ZNSL_2018_474_a4,
     author = {E. S. Garai},
     title = {On the convergence of workload in a service system to {Brownian} motion with switching variance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--89},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a4/}
}
TY  - JOUR
AU  - E. S. Garai
TI  - On the convergence of workload in a service system to Brownian motion with switching variance
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 77
EP  - 89
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a4/
LA  - ru
ID  - ZNSL_2018_474_a4
ER  - 
%0 Journal Article
%A E. S. Garai
%T On the convergence of workload in a service system to Brownian motion with switching variance
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 77-89
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a4/
%G ru
%F ZNSL_2018_474_a4
E. S. Garai. On the convergence of workload in a service system to Brownian motion with switching variance. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 77-89. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a4/

[1] M. A. Lifshits, Sluchainye protsessy — ot teorii k praktike, Lan, Sankt-Peterburg, 2016

[2] I. Kaj, M. S. Taqqu, “Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach”, In and Out of Equilibtium. II, Progress in Probability, 60, Birkhäuser, Basel, 2008, 383–427 | MR | Zbl

[3] A. N. Borodin, “Raspredeleniya funktsionalov ot diffuzii s pereklyucheniyami i skachkami”, Zap. nauchn. semin. POMI, 466, 2017, 38–53

[4] X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006 | MR

[5] G. Yin, C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010 | MR | Zbl

[6] A.N. Borodin, “Predelnoe povedenie slozhnogo puassonovskogo protsessa s pereklyucheniyami”, Zap. nauchn. semin. POMI, 466, 2017, 54–66