On the integral of diffusion process on an interval with unattainable edges boundaries: semi-Markov approach
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 233-240
Cet article a éte moissonné depuis la source Math-Net.Ru
A one-dimension semi-Markov process of diffusion type is considered. A range of values of this process is an open finite interval. It is supposed to have unattainable edges. An integral of this process as a function of time is studied. The invariance principle for this integral is proved.
@article{ZNSL_2018_474_a17,
author = {B. P. Harlamov},
title = {On the integral of diffusion process on an interval with unattainable edges boundaries: {semi-Markov} approach},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {233--240},
year = {2018},
volume = {474},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a17/}
}
TY - JOUR AU - B. P. Harlamov TI - On the integral of diffusion process on an interval with unattainable edges boundaries: semi-Markov approach JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 233 EP - 240 VL - 474 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a17/ LA - ru ID - ZNSL_2018_474_a17 ER -
B. P. Harlamov. On the integral of diffusion process on an interval with unattainable edges boundaries: semi-Markov approach. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 233-240. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a17/
[1] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977
[2] B. P. Kharlamov, Nepreryvnye polumarkovskie protsessy, Nauka, SPb., 2001
[3] B. P. Kharlamov, “O nedostizhimoi granitse intervala znachenii diffuzionnogo protsessa: polumarkovskii podkhod”, Zap. nauchn. semin. POMI, 466, 2017, 313–330