Estimation of function in Gaussian stationary noise: new spectral condition
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 222-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we construct the lower and upper bounds of the minimax risk in the estimation problem, as we observe the unknoun pseudo-periodic function in stationary noise with the spectral density satisfying the new spectral condition.
@article{ZNSL_2018_474_a16,
     author = {V. N. Solev},
     title = {Estimation of function in {Gaussian} stationary noise: new spectral condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--232},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a16/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - Estimation of function in Gaussian stationary noise: new spectral condition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 222
EP  - 232
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a16/
LA  - ru
ID  - ZNSL_2018_474_a16
ER  - 
%0 Journal Article
%A V. N. Solev
%T Estimation of function in Gaussian stationary noise: new spectral condition
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 222-232
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a16/
%G ru
%F ZNSL_2018_474_a16
V. N. Solev. Estimation of function in Gaussian stationary noise: new spectral condition. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 222-232. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a16/

[1] Yu. A. Rozanov, Statsionarnye protsessy, Mir, M., 1963

[2] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie protsessy, Mir, M., 1974

[3] I. A. Ibragimov, R. Z. Khasminskii, “O neparametricheskom otsenivanii znacheniya lineinogo funktsionala v gaussovskom belom shume”, Teoriya veroyatn. i ee primenen., 29:1 (1984), 19–32 | Zbl

[4] D. L. Donoho, R. C. Liu, B. MacGibbon, “Minimax Risk Over Hyperrectangles, and Implications”, Ann. Statist., 18:3 (1990), 1416–1437 | DOI | MR | Zbl

[5] W. Stepanoff, “Sur quelques generalisations des fonctions presque-periodiques”, Comptes Rendus, 181 (1925), 90–92 | Zbl

[6] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964

[7] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981 | MR | Zbl

[8] V. N. Solev, “Uslovie lokalnoi asimptoticheskoi normalnosti dlya gaussovskikh statsionarnykh protsessov”, Zap. nauchn. semin. POMI, 278, 2001, 225–247 | Zbl

[9] S. V. Reshetov, “Minimaksnyi risk dlya kvadratichno vypuklykh mnozhestv”, Zap. nauchn. semin. POMI, 368, 2009, 181–189

[10] S. V. Reshetov, “Minimaksnaya otsenka psevdo-periodicheskoi funktsii, nablyudaemoi na fone statsionarnogo shuma”, Vestnik SPbGU, Seriya 1, 2 (2010), 106–115

[11] V. N. Solev, “Otsenka funktsii, nablyudaemoi na fone statsionarnogo shuma: diskretizatsiya”, Zap. nauchn. semin. POMI, 441, 2015, 286–298

[12] V. N. Solev, “Adaptivnaya otsenka funktsii, nablyudaemoi na fone gaussovskogo statsionarnogo shuma”, Zap. nauchn. semin. POMI, 454, 2016, 261–275

[13] V. N. Solev, “Lokalnaya versiya usloviya Makkenkhaupta i tochnost otsenivaniya neizvestnoi psevdo-periodicheskoi funktsii, nablyudaemoi na fone statsionarnogo shuma”, Zap. nauchn. semin. POMI, 466, 2017, 261–275