Asymptotic behavior of branching random walks on some two-dimensional lattices
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 213-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A branching random walk on two dimensional lattices corresponding to graphene and stanene is considered. We assume that sources of branching are located periodically on lattices. An asymptotic of the mean value of particles in each vertex is obtained.
@article{ZNSL_2018_474_a15,
     author = {K. S. Ryadovkin},
     title = {Asymptotic behavior of branching random walks on some two-dimensional lattices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {213--221},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a15/}
}
TY  - JOUR
AU  - K. S. Ryadovkin
TI  - Asymptotic behavior of branching random walks on some two-dimensional lattices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 213
EP  - 221
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a15/
LA  - ru
ID  - ZNSL_2018_474_a15
ER  - 
%0 Journal Article
%A K. S. Ryadovkin
%T Asymptotic behavior of branching random walks on some two-dimensional lattices
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 213-221
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a15/
%G ru
%F ZNSL_2018_474_a15
K. S. Ryadovkin. Asymptotic behavior of branching random walks on some two-dimensional lattices. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 213-221. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a15/

[1] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108

[2] M. V. Platonova, K. S. Ryadovkin, “Vetvyaschiesya sluchainye bluzhdaniya na $\mathbf{Z}^d$ s periodicheski raspolozhennymi istochnikami vetvleniya”, Teoriya veroyatn. i ee primen. (to appear)

[3] E. B. Yarovaya, “Kriterii eksponentsialnogo rosta chisla chastits v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 55:4 (2010), 705–731 | DOI

[4] E. B. Yarovaya, “Spektralnye svoistva evolyutsionnykh operatorov v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Matem. zametki, 92:1 (2012), 123–140 | DOI | Zbl

[5] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, “Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene”, Small, 11:6 (2015), 640–652 | DOI

[6] P. Guttorp, V. N Minin, Stochastic modeling of scientific data, CRC Press, 2018 | MR

[7] A. Neto, F. Guinea, N. Peres, K. Novoselov, A. Geim, “The electronic properties of graphene”, Rev. Modern. Phys., 81:1 (2009), 109 | DOI

[8] S. Saxena, R. P. Chaudhary, S. Shukla, “Stanene: atomically thick free-standing layer of 2D hexagonal tin”, Sci. Rep., 6 (2016), 31073 | DOI