@article{ZNSL_2018_474_a14,
author = {M. V. Platonova and S. V. Tsykin},
title = {Probabilistic approach to {Cauchy} problem solution for the {Schr\"odinger} equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--212},
year = {2018},
volume = {474},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a14/}
}
TY - JOUR
AU - M. V. Platonova
AU - S. V. Tsykin
TI - Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2018
SP - 199
EP - 212
VL - 474
UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a14/
LA - ru
ID - ZNSL_2018_474_a14
ER -
%0 Journal Article
%A M. V. Platonova
%A S. V. Tsykin
%T Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 199-212
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a14/
%G ru
%F ZNSL_2018_474_a14
M. V. Platonova; S. V. Tsykin. Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 199-212. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a14/
[1] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit-ry, M., 1962
[2] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Predelnaya teorema o skhodimosti funktsionalov ot sluchainogo bluzhdaniya k resheniyu zadachi Koshi dlya uravneniya $\frac{\partial u}{\partial t}=\frac{\sigma^2}{2}\Delta u$ c kompleksnym parametrom $\sigma$”, Zap. nauchn. semin. POMI, 420, 2013, 88–102
[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnoi predelnoi teoreme, svyazannoi s veroyatnostnym predstavleniem resheniya zadachi Koshi s operatorom Shredingera”, Zap. nauchn. semin. POMI, 454, 2016, 158–175
[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[5] Dzh. Kingman, Puassonovskie protsessy, MTsNMO, M., 2007
[6] M. V. Platonova, S. V. Tsykin, “Veroyatnostnaya approksimatsiya resheniya zadachi Koshi dlya uravneniya Shredingera s operatorom drobnogo differentsirovaniya”, Zap. nauchn. semin. POMI, 466, 2017, 257–272
[7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[8] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva, Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981, 200 pp.