Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 199-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a probabilistic approximation of the Cauchy problem solution for the nonstationary Schrödinger equation with a symmetric fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$ in the right hand side.
@article{ZNSL_2018_474_a14,
     author = {M. V. Platonova and S. V. Tsykin},
     title = {Probabilistic approach to {Cauchy} problem solution for the {Schr\"odinger} equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--212},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a14/}
}
TY  - JOUR
AU  - M. V. Platonova
AU  - S. V. Tsykin
TI  - Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 199
EP  - 212
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a14/
LA  - ru
ID  - ZNSL_2018_474_a14
ER  - 
%0 Journal Article
%A M. V. Platonova
%A S. V. Tsykin
%T Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 199-212
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a14/
%G ru
%F ZNSL_2018_474_a14
M. V. Platonova; S. V. Tsykin. Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 199-212. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a14/

[1] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit-ry, M., 1962

[2] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Predelnaya teorema o skhodimosti funktsionalov ot sluchainogo bluzhdaniya k resheniyu zadachi Koshi dlya uravneniya $\frac{\partial u}{\partial t}=\frac{\sigma^2}{2}\Delta u$ c kompleksnym parametrom $\sigma$”, Zap. nauchn. semin. POMI, 420, 2013, 88–102

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnoi predelnoi teoreme, svyazannoi s veroyatnostnym predstavleniem resheniya zadachi Koshi s operatorom Shredingera”, Zap. nauchn. semin. POMI, 454, 2016, 158–175

[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[5] Dzh. Kingman, Puassonovskie protsessy, MTsNMO, M., 2007

[6] M. V. Platonova, S. V. Tsykin, “Veroyatnostnaya approksimatsiya resheniya zadachi Koshi dlya uravneniya Shredingera s operatorom drobnogo differentsirovaniya”, Zap. nauchn. semin. POMI, 466, 2017, 257–272

[7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[8] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva, Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981, 200 pp.