The Fejer integrals and the von Neumann ergodic theorem with continuous time
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 171-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Fejer integrals for finite measures on the real line and the norms of the deviations from the limit in the von Neumann ergodic theorem both are calculating, in fact, with the same formulas (by integrating of the Fejer kernels) – and so, this ergodic theorem is a statement about the asymptotic of the growth of the Fejer integrals at zero point of the spectral measure of corresponding dynamical system. It gives a possibility to rework well-known estimates of the rates of convergence in the von Neumann ergodic theorem into the estimates of the Fejer integrals in the point for finite measures: for example, we obtain natural criteria of polynomial growth and polynomial decay of these integrals. And vice versa, numerous in the literature estimates of the deviations of Fejer integrals in the point allow to obtain new estimates of the rate of convergence in this ergodic theorem.
@article{ZNSL_2018_474_a11,
     author = {A. G. Kachurovskii},
     title = {The {Fejer} integrals and the von {Neumann} ergodic theorem with continuous time},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {171--182},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a11/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
TI  - The Fejer integrals and the von Neumann ergodic theorem with continuous time
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 171
EP  - 182
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a11/
LA  - ru
ID  - ZNSL_2018_474_a11
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%T The Fejer integrals and the von Neumann ergodic theorem with continuous time
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 171-182
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a11/
%G ru
%F ZNSL_2018_474_a11
A. G. Kachurovskii. The Fejer integrals and the von Neumann ergodic theorem with continuous time. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 171-182. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a11/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, GITTL, M.–L., 1947

[2] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, GITTL, M.–L., 1948

[3] G. E. Shilov, Matematicheskii analiz. Spetsialnyi kurs, Gos. izd-vo fiz.-mat. lit., M., 1960

[4] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980

[5] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[6] J. von Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI

[7] A. G. Kachurovskii, I. V. Podvigin, “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Tr. MMO, 77, no. 1, 2016, 1–66

[8] A. G. Kachurovskii, A. V. Reshetenko, “O skorosti skhodimosti v ergodicheskoi teoreme fon Neimana s nepreryvnym vremenem”, Mat. sb., 201:4 (2010), 25–32 | DOI | Zbl

[9] N. A. Dzhulai, A. G. Kachurovskii, “Konstanty otsenok skorosti skhodimosti v ergodicheskoi teoreme fon Neimana s nepreryvnym vremenem”, Sib. mat. zhurn., 52:5 (2011), 1039–1052 | Zbl

[10] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989

[11] A. G. Kachurovskii, I. V. Podvigin, “Summy Feiera periodicheskikh mer i ergodicheskaya teorema fon Neimana”, Dokl. RAN, 481:4 (2018) | DOI

[12] A. G. Kachurovskii, I. V. Podvigin, “Summy Feiera i koeffitsienty Fure periodicheskikh mer”, Dokl. RAN, 482:4 (2018) | DOI

[13] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961

[14] R. Edvards, Ryady Fure v sovremennom izlozhenii, v. 2, Mir, M., 1985

[15] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976