Stochastic models of chemotaxis processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 7-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a probabilistic representation of the Cauchy problem generalized solutions for a class of systems of parabolic equations with cross-diffusion which generalize the Keller–Segel system.
@article{ZNSL_2018_474_a0,
     author = {Ya. I. Belopolskaya},
     title = {Stochastic models of chemotaxis processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--27},
     year = {2018},
     volume = {474},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a0/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
TI  - Stochastic models of chemotaxis processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 27
VL  - 474
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a0/
LA  - ru
ID  - ZNSL_2018_474_a0
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%T Stochastic models of chemotaxis processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-27
%V 474
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a0/
%G ru
%F ZNSL_2018_474_a0
Ya. I. Belopolskaya. Stochastic models of chemotaxis processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 27, Tome 474 (2018), pp. 7-27. http://geodesic.mathdoc.fr/item/ZNSL_2018_474_a0/

[1] B. Perthame, “PDE models for chemotactic movements: parabolic, hyperbolic and kinetic”, Appl. Math., 49:6 (2004), 539–564 | DOI | MR | Zbl

[2] L. Corrias, M. Escobedo, J. Matos, “Existence, uniqueness and asymptotic behaviour of the solutions to the fully parabolic Keller–Segel system in the plane”, J. Differential Equations, 257:6 (2014), 1840–1878 | DOI | MR | Zbl

[3] X. Chen, E. S. Daus, A. Jüngel, “Global existence analysis of cross-diffusion population systems for multiple species”, Arch. Rational Mech. Anal., 227 (2018), 715–747 | DOI | MR | Zbl

[4] J. Fontbona, S. Meleard, “Non local Lotka–Volterra system with cross-diffusion in an heterogeneous medium”, J. Math. Biology, 70:4 (2015), 829–854 | DOI | MR | Zbl

[5] G. Galiano, V. Selgas, “On a cross-diffusion segregation problem arising from a model of interacting particles”, Nonlinear Anal., Real World Appl., 18 (2014), 34–49 | DOI | MR | Zbl

[6] D. Talay, M. Tomasevic, A new McKean–Vlasov stochastic interpretation of the parabolic-parabolic Keller–Segel model: The one-dimensional case, , 2018 hal-01673332v5

[7] Ya. I. Belopolskaya, “Stokhasticheskaya interpretatsiya kvazilineinykh parabolicheskikh sistem s kross-diffuziei”, Teoriya veroyatn. i ee primen., 61:2 (2016), 268–299 | DOI

[8] Ya. Belopolskaya, “Probabilistic representation of the Cauchy problem solutions for systems of nonlinear parabolic equations”, Global Stoch. Anal., 3:1 (2016), 25–32 | MR

[9] Ya.I. Belopolskaya, A.O. Stepanova, “Stokhasticheskaya interpretatsiya sistemy MGD-Byurgers”, Zap. nauchn. semin. POMI, 466, 2017, 7–29

[10] A. Le Cavil, N. Oudjane, F. Russo, Forward Feynman-Kac type representation for semilinear nonconservative partial differential equations, preprint, , 2017 https://hal.archives-ouvertes.fr/hal-01353757v3/document

[11] A. Le Cavil, N. Oudjane, F. Russo, “Monte-Carlo algorithms for a forward Feynman-Kac type representation for semilinear nonconservative partial differential equations”, Monte Carlo Methods Appl., 24:1 (2018), 55–70 | DOI | MR | Zbl

[12] E. F. Keller, L. A. Segel, “Initiation of slime mold aggregation viewed as an instability”, J. Theoret. Biol., 26 (1970), 399–415 | DOI | Zbl